Misplaced Pages

Cobweb plot

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Cobweb diagram)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Cobweb plot" – news · newspapers · books · scholar · JSTOR (August 2014) (Learn how and when to remove this message)
Construction of a cobweb plot of the logistic map y = x 2 + 3 {\displaystyle y=x^{2}+3} , showing an attracting fixed point.
An animated cobweb diagram of the logistic map y = r x ( 1 x ) {\displaystyle y=rx(1-x)} , showing chaotic behaviour for most values of r > 3.57 {\displaystyle r>3.57} .

A cobweb plot, known also as Lémeray Diagram or Verhulst diagram is a visual tool used in the dynamical systems field of mathematics to investigate the qualitative behaviour of one-dimensional iterated functions, such as the logistic map. The technique was introduced in the 1890s by E.-M. Lémeray. Using a cobweb plot, it is possible to infer the long-term status of an initial condition under repeated application of a map.

Method

For a given iterated function f : R R {\displaystyle f:\mathbb {R} \rightarrow \mathbb {R} } , the plot consists of a diagonal ( x = y {\displaystyle x=y} ) line and a curve representing y = f ( x ) {\displaystyle y=f(x)} . To plot the behaviour of a value x 0 {\displaystyle x_{0}} , apply the following steps.

  1. Find the point on the function curve with an x-coordinate of x 0 {\displaystyle x_{0}} . This has the coordinates ( x 0 , f ( x 0 ) {\displaystyle x_{0},f(x_{0})} ).
  2. Plot horizontally across from this point to the diagonal line. This has the coordinates ( f ( x 0 ) , f ( x 0 ) {\displaystyle f(x_{0}),f(x_{0})} ).
  3. Plot vertically from the point on the diagonal to the function curve. This has the coordinates ( f ( x 0 ) , f ( f ( x 0 ) ) {\displaystyle f(x_{0}),f(f(x_{0}))} ).
  4. Repeat from step 2 as required.

Interpretation

On the Lémeray diagram, a stable fixed point corresponds to the segment of the staircase with progressively decreasing stair lengths or to an inward spiral, while an unstable fixed point is the segment of the staircase with growing stairs or an outward spiral. It follows from the definition of a fixed point that the staircases converge whereas spirals center at a point where the diagonal y = x {\displaystyle y=x} line crosses the function graph. A period-2 orbit is represented by a rectangle, while greater period cycles produce further, more complex closed loops. A chaotic orbit would show a "filled-out" area, indicating an infinite number of non-repeating values.

See also


References

  1. Lémeray, E.-M. (1897). "Sur la convergence des substitutions uniformes" (PDF). Nouvelles annales de mathématiques, 3e série. 16: 306–319.
  2. ^ Stoop, Ruedi; Steeb, Willi-Hans (2006). Berechenbares Chaos in dynamischen Systemen [Computable Chaos in dynamic systems] (in German). Birkhäuser Basel. p. 8. doi:10.1007/3-7643-7551-5. ISBN 978-3-7643-7551-5.

External links

Stub icon

This mathematical physics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Cobweb plot Add topic