Misplaced Pages

Group 13/15 multiple bonds

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Heteroatomic multiple bonding between group 13 and group 15 elements are of great interest in synthetic chemistry due to their isoelectronicity with C-C multiple bonds. Nevertheless, the difference of electronegativity between group 13 and 15 leads to different character of bondings comparing to C-C multiple bonds. Because of the ineffective overlap between p𝝅 orbitals and the inherent lewis acidity/basicity of group 13/15 elements, the synthesis of compounds containing such multiple bonds is challenging and subject to oligomerization. The most common example of compounds with 13/15 group multiple bonds are those with B=N units. The boron-nitrogen-hydride compounds are candidates for hydrogen storage. In contrast, multiple bonding between aluminium and nitrogen Al=N, Gallium and nitrogen (Ga=N), boron and phosphorus (B=P), or boron and arsenic (B=As) are less common.

Synthesis

P(R)=BMes2Li(Et2O)2 (R = phenyl, cyclohexane, mesitylene)

Suitable precursors are crucial for the synthesis of group 13/15 multiple bond-containing species. In most successfully isolated structures, sterically demanding ligands are utilized to stabilize such bondings.

Boraphosphenes (P=B)

Boraphosphenes, also known as phosphoboranes, was first reported by Cowley and co-workers in the 1980s. (tmp= 2,2,6,6,-tetramethylpiperidina, Ar= 2,4,6-t-Bu3C6H2) was characterized by mass spectroscopy (EI MS), and the corresponding dimer, diphosphadiboretane, was characterized by X-ray crystallography. The Power and co-workers later reported the structure of (R = phenyl, cyclohexane, and mesitylene), which is the first B=P double bond observed in solid state. The synthesis of starts from treating in-situ generated Mes2BPHR with 1 equivalent of t-BuLi in Et2O, followed by crystallization at low temperature.

Cyclic system with P-B multiple bonds

Photo-induced isomerization of cycle-

Isomerization of four-member P-B cycles was investigated by Bourissou and Bertrand. It was reported that cycle- (R = phenyl, isopropyl; R'= tert-butyl, 2,3,5,6-tetramethyl phenyl) isomerize to form cycle- upon irradiation. An example of five-membered ring was reported by Crossley suggesting that a reaction of 1,2-diphosphinobenzene with n-BuLi and Cl2BPh yielded a benzodiphosphaborolediide. Several six-membered ring systems involving P=B double bonds have been reported. One of the example is an analogue of borazine synthesizing from MesBBr2 and CyP(H)Li.

Synthesis of a borazine analogue containing P=B bonds
Synthesis of a benzodiphosphaborolediide

Arsinideneborates (As=B)

A similar strategy to access litigated arsinideneborate was reported by Power and co-workers after the establishment of synthesizing litigated phosphinideneborates. Crystallizing with two equivalence of TMEDA yielded . Ring-systems containing As-B multiple bonds haven't been reported yet.

Synthesis of (M=Al, Ga) and (M=Ga, In)

Group 13 imides (Al=N, Ga=N, In=N)

Synthesis of group 13 imides usually starts with low valent group 13 species stabilized by bulky ligands. A cycloaddition of monomeric Al or Ga (Nacnc= HC{(CMe)(NDip)}2) compound with sterically bulky azide, TerN3 (Ter = -C6H3-2,6-(C6H2-2,4,6-iPr3)2), gives the iminotrielenes (M=Al, Ga). Additionally, dimers of Ga(I) or In(I) were reported to form the iminotrielens with TerN3 (M = Ga, In; Ter =C6H3-2,6(Xyl-4-tBu)2).

Al-N triple bonds

Synthesis of TerPnAlCp* (Pn = P, As)

Transient Al≡N triple bond species were also investigated by reacting monomeric alanediyl precursor with organic azides. The unstable Al≡N triple bond species (R = Ad, SiMe3) was not capture but further rearrange to tetrazole and amino-azide alone, respectively.

Phosphaalumenes and Arsaalumenes (P=Al, As=Al)

The development of Al=P and Al=As species faced the difficulty due to the tendency of oligomerization of the lewis acidic Al and lewis basic P/As. In 2021, Hering-Junghans, Braunchweig, and co-workers reported the synthesis of phosphaalumens and arsaalumens with Al(I) precursors, 4 (Cp* = pentamethylcyclopentadiene). Reacting 4 with Ter-AsPMe3 or Ter-AsPMe3 at 1:4 ratio yielded the corresponding phosphaalumens/arsaalumens, which are stable and isolable.

Gallium-pnictogen double bonds (Ga=Pn)

Nacnc(Cl)Ga}}2Sb

Synthesis and characterization of Ga=Sb species was reported by Schulz and Cutsail III with the reaction of Ga (Nacnc= HC{(CMe)(NDip)}2) with . The resulting Sb radical species, 2Sb, was then reduced by KC8 to give . Utilizing the similar reaction pathway, a Ga=As species, , was successfully synthesized and stabilized. Interestingly, no radical formation was observed comparing to the case of Ga=Sb species. With the rapid development of gallium pnictogen in the late 2010s, the first phosphagallene species was reported by Goicoechea and co-workers in 2020. The reaction of with gave the phosphagallene, .

Reactivities

C-F activation of tris(pentafluorophenyl)borane by (L = IMe4)

Reactivities of boraphosphenes

B=P double bond species has been studied for bond activation. For example, C-F activation of tris(pentafluorophenyl)borane by NHC-stabilized phosphaboranes, (L = IMe4), was reported by Cowley and co-workers. The C-F bond activation takes place at the para position, leading to the formation of C-P bond. Reactions of phenyl acetylene with the dimer of give an analogue of cycle-butene, , where C-C triple bond undergoes a -cycloaddition to P=B double bond.

Phospha-bora Wittig reaction

Phospha-bora Wittig reaction

Transient boraphosphene (tmp = 2,2,6,6-tetramethylpiperidine, Mes* = 2,4,6-tri-tert-butylphenyl) reacts with aldehyde, ketone, and esters to form phosphaboraoxetanes, which converts to phosphaalkenes and x heterocycles. This method provides direct access of phosphaalkenes from carbonyl compounds.

Reactivities of group 13 imides

Compounds with group 13-N multiple bonds are capable of small molecule activation. Reactions of PhCCH or PhNH2 with NHC-stabilized iminoalane result in the addition of proton to N and -CCPh or -NHPh fragment to Al. The reaction with CO leads to the insertion of CO between the Al=N bond.

Reactivities of Ga=Pn species

Polar bonds activation by

Small molecule activation takes place across the P-P=Ga bonds in phosphanyl-phosphagallenes species, where the Ga=P species behave as frustrated Lewis pairs. For example, the reaction of CO2 with results in the formation of a P=P-C-O-Ga five-membered ring species. In contrast, H2 addition to the P-P=Ga fragment in a 1,3-activation manner. E-H bond activation of protic and hydridic reagents was investigated as well. Reactions of toward amines, phosphines, alkynes resulted in the formation of . Reversible ammonia activation was observed under 1 bar pressure in the presence of a Lewis acid.

Bonding and structures

B=P double bond

Natural bond orbital analysis of a borophosphide anion, , suggested that the B-P double bonds are polarized to the P atom. The B=P 𝝈-bond is mostly non-polar while the 𝝅-bond is polarized to the phosphorus (71%). DFT calculation at B3LYP/6-31G level revealed that the HOMO of has great B-P 𝝅-bonding character. In most reported phosphinideneborates, the phosphorus chemical shifts are much more deshielded than the starting materials, phosphinoboranes. The down-field resonances of phosphorus in P NMR suggest the delocalization of lone pairs into the empty p-orbital of boron.

Selected NMR chemical shifts (ppm) and bond length (pm) of anionic compounds with B=P bond
Compound B NMR P NMR d(B-P)
65.6 70.1 183.2(6)
63.7 55.5 182.3(7)
85.7 90.4 182.3(8)
58.9 113.2 183.6(2)
71.7 -49.2 183.3(6)
Selected NMR chemical shifts (ppm) and bond length (pm) of Lewis acid/base stabilized compounds with B=P bond
Compound B NMR P NMR d(B-P)
[Cr(CO)5{(tmp)B=PC(Et)3} 62.9 -45.3 174.3(5)
68.4 -59.8 178.7(4)
41.2 57.3 180.92(17)
52.3 96.7 179.5(3)
48.5 192.9 180.67(15)
54.9 75.2 180.39(16)
44.5 64.0 182.11(16)
43.9 151.5 183.09(16)

Ga-Pn double bond

Natural bond orbital analysis was reported for Ga=Sb and Ga=Bi containing species, where electron populates more on Sb and Bi (62% and 59%, respectively). The Lewis acidic Ga results in the delocalization of electrons in Sb and Bi.

References

  1. ^ Dankert, F.; Hering-Junghans, C. (2022). "Heavier group 13/15 multiple bond systems: synthesis, structure and chemical bond activation". Chemical Communications. 58 (9): 1242–1262. doi:10.1039/D1CC06518A. ISSN 1359-7345. PMID 35014640.
  2. ^ Feld, Joey; Wilson, Daniel W. N.; Goicoechea, Jose M. (2021-08-31). "Contrasting E−H Bond Activation Pathways of a Phosphanyl‐Phosphagallene". Angewandte Chemie. 133 (40): 22228–22232. doi:10.1002/ange.202109334. ISSN 0044-8249.
  3. Huang, Zhenguo; Autrey, Tom (2012-10-18). "Boron–nitrogen–hydrogen (BNH) compounds: recent developments in hydrogen storage, applications in hydrogenation and catalysis, and new syntheses". Energy & Environmental Science. 5 (11): 9257–9268. doi:10.1039/C2EE23039A. ISSN 1754-5706. S2CID 97314459.
  4. Rossin, Andrea; Peruzzini, Maurizio (2016-04-14). "Ammonia–Borane and Amine–Borane Dehydrogenation Mediated by Complex Metal Hydrides". Chemical Reviews. 116 (15): 8848–8872. doi:10.1021/acs.chemrev.6b00043. ISSN 0009-2665. PMID 27075435.
  5. Dosso, Jacopo; Battisti, Tommaso; Ward, Benjamin D.; Demitri, Nicola; Hughes, Colan E.; Williams, P. Andrew; Harris, Kenneth D. M.; Bonifazi, Davide (2020-03-24). "Boron–Nitrogen‐Doped Nanographenes: A Synthetic Tale from Borazine Precursors". Chemistry – A European Journal. 26 (29): 6608–6621. doi:10.1002/chem.201905794. hdl:11368/3035326. ISSN 0947-6539. PMID 32023358. S2CID 211045410.
  6. ^ Bartlett, Ruth A.; Feng, Xudong.; Power, Philip P. (October 1986). "Synthesis and characterization of the phosphinidene borate complexes [Li(Et2O)2PRB(Mes)2] and [Li(12-crown-4)2][RPB(Mes)2].cntdot.THF [R = Ph, C6H11 or Mes (Mes = 2,4,6-Me3C6H2)]: the first structurally characterized boron-phosphorus double bonds". Journal of the American Chemical Society. 108 (21): 6817–6819. doi:10.1021/ja00281a067. ISSN 0002-7863.
  7. ^ Arif, Atta M.; Boggs, James E.; Cowley, Alan H.; Lee, Jung Goo.; Pakulski, Marek.; Power, John M. (September 1986). "Production of a boraphosphene (RB:PR') in the vapor phase by thermolysis of a sterically encumbered diphosphadiboretane". Journal of the American Chemical Society. 108 (19): 6083–6084. doi:10.1021/ja00279a091. ISSN 0002-7863. PMID 22175399.
  8. ^ Bourg, Jean-Baptiste; Rodriguez, Amor; Scheschkewitz, David; Gornitzka, Heinz; Bourissou, Didier; Bertrand, Guy (2007-07-23). "Thermal Valence Isomerization of 2,3-Diborata-1,4-diphosphoniabuta-1,3-dienes to Bicyclo[1.1.0]butanes and Cyclobutane-1,3-diyls". Angewandte Chemie International Edition. 46 (30): 5741–5745. doi:10.1002/anie.200701578. PMID 17592605.
  9. ^ Pearce, Kyle G.; Canham, Elinor P. F.; Nixon, John F.; Crossley, Ian R. (2021-11-25). "A Benzodiphosphaborolediide". Chemistry – A European Journal. 27 (66): 16342–16346. doi:10.1002/chem.202103427. ISSN 0947-6539. PMID 34586681. S2CID 238218283.
  10. Dias, Power, H. V. Rasika, Philip P. (December 1987). "Synthesis and X-Ray Structure of (2,4,6-Me3C6H2BPC6H11)3: A Boron-Phosphorus Analogue of Borazine". Angew. Chem. Int. Ed. Engl. 26 (12): 1270–1271. doi:10.1002/anie.198712701.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Dias, H. V. Rasika; Power, Philip P. (December 1987). "Synthesis and X-Ray Structure of(2,4,6-Me3C6H2BPC6H11)3: A Boron-Phosphorus Analogue of Borazine". Angewandte Chemie International Edition in English. 26 (12): 1270–1271. doi:10.1002/anie.198712701. ISSN 0570-0833.
  12. ^ Petrie, Shoner, Dias, Power, Mark A., Steven C., H. V. Rasika, Philip P. (September 1990). "A Compound with a Boron–Arsenic Double Bond". Angew. Chem. Int. Ed. Engl. 29 (9): 1033–1035. doi:10.1002/anie.199010331.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. Hardman, Ned J.; Cui, Chunming; Roesky, Herbert W.; Fink, William H.; Power, Philip P. (2001-06-01). <2230::aid-ange2230>3.0.co;2-n "Stable, Monomeric Imides of Aluminum and Gallium: Synthesis and Characterization of [{HC(MeCDippN)2}MN-2,6-Trip2C6H3] (M=Al or Ga; Dipp=2,6-iPr2C6H3; Trip=2,4,6-iPr3C6H2)". Angewandte Chemie. 113 (11): 2230–2232. doi:10.1002/1521-3757(20010601)113:11<2230::aid-ange2230>3.0.co;2-n. ISSN 0044-8249.
  14. Wright, Robert J.; Phillips, Andrew D.; Allen, Thomas L.; Fink, William H.; Power, Philip P. (2003-01-25). "Synthesis and Characterization of the Monomeric Imides Ar'MNAr' ' (M = Ga or In; Ar' or Ar' ' = Terphenyl Ligands) with Two-Coordinate Gallium and Indium". Journal of the American Chemical Society. 125 (7): 1694–1695. doi:10.1021/ja029422u. ISSN 0002-7863. PMID 12580583.
  15. Hardman, Cui, Roesky, Fink, Power, Philip P., William H., Herbert W., Chunming, Ned J. (28 May 2001). <2172::AID-ANIE2172>3.0.CO;2-Y "Stable, Monomeric Imides of Aluminum and Gallium: Synthesis and Characterization of [{HC(MeCDippN)2}MN-2,6-Trip2C6H3] (M=Al or Ga; Dipp=2,6-iPr2C6H3; Trip=2,4,6-iPr3C6H2)". Angew. Chem. Int. Ed. (40): 2172–2174. doi:10.1002/1521-3773(20010601)40:11<2172::AID-ANIE2172>3.0.CO;2-Y.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. Wright, Phillips, Allen, Fink, Power, Robert J., Andrew D., Thomas L., William H., Philip P. (January 25, 2003). "Synthesis and Characterization of the Monomeric Imides Ar'MNAr' ' (M = Ga or In; Ar' or Ar' ' = Terphenyl Ligands) with Two-Coordinate Gallium and Indium". J. Am. Chem. Soc. 125 (7): 1694–1695. doi:10.1021/ja029422u. PMID 12580583.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. "Isolable Phospha- and Arsaalumenes". J. Am. Chem. Soc. 143 (11): 4106–4111. March 10, 2021. doi:10.1021/jacs.1c00204.
  18. Zhu, Hongping; Chai, Jianfang; Chandrasekhar, Vadapalli; Roesky, Herbert W.; Magull, Jörg; Vidovic, Denis; Schmidt, Hans-Georg; Noltemeyer, Mathias; Power, Philip P.; Merrill, William A. (2004-08-01). "Two Types of Intramolecular Addition of an Al−N Multiple-Bonded Monomer LAlNAr' Arising from the Reaction of LAl with N 3 Ar' (L = HC[(CMe)(NAr)] 2 , Ar' = 2,6-Ar 2 C 6 H 3 , Ar = 2,6- i Pr 2 C 6 H 3 )". Journal of the American Chemical Society. 126 (31): 9472–9473. doi:10.1021/ja0475712. ISSN 0002-7863. PMID 15291514.
  19. Fischer, Malte; Nees, Samuel; Kupfer, Thomas; Goettel, James T.; Braunschweig, Holger; Hering-Junghans, Christian (2021-03-24). "Isolable Phospha- and Arsaalumenes". Journal of the American Chemical Society. 143 (11): 4106–4111. doi:10.1021/jacs.1c00204. ISSN 0002-7863. PMID 33691065. S2CID 232191822.
  20. ^ Helling, Christoph; Wölper, Christoph; Schulz, Stephan (2018-04-18). "Synthesis of a Gallaarsene {HC[C(Me)N-2,6- i -Pr 2 -C 6 H 3 ] 2 }GaAsCp* Containing a Ga═As Double Bond". Journal of the American Chemical Society. 140 (15): 5053–5056. doi:10.1021/jacs.8b02447. ISSN 0002-7863. PMID 29537831.
  21. ^ Ganesamoorthy, Chelladurai; Helling, Christoph; Wölper, Christoph; Frank, Walter; Bill, Eckhard; Cutsail, George E.; Schulz, Stephan (2018-01-08). "From stable Sb- and Bi-centered radicals to a compound with a Ga=Sb double bond". Nature Communications. 9 (1): 87. Bibcode:2018NatCo...9...87G. doi:10.1038/s41467-017-02581-2. ISSN 2041-1723. PMC 5758792. PMID 29311607.
  22. ^ Wilson, Daniel W. N.; Feld, Joey; Goicoechea, Jose M. (2020-09-09). "A Phosphanyl‐Phosphagallene that Functions as a Frustrated Lewis Pair". Angewandte Chemie International Edition. 59 (47): 20914–20918. doi:10.1002/anie.202008207. ISSN 1433-7851. PMC 7693089. PMID 32615007.
  23. ^ Price, Amy N.; Nichol, Gary S.; Cowley, Michael J. (2017-07-19). "Phosphaborenes: Accessible Reagents for the Synthesis of C−C/P−B Isosteres". Angewandte Chemie. 129 (33): 10085–10089. Bibcode:2017AngCh.12910085P. doi:10.1002/ange.201705050. ISSN 0044-8249.
  24. ^ Borys, Andryj M.; Rice, Ella F.; Nichol, Gary S.; Cowley, Michael J. (2021-09-08). "The Phospha-Bora-Wittig Reaction". Journal of the American Chemical Society. 143 (35): 14065–14070. doi:10.1021/jacs.1c06228. ISSN 0002-7863. PMC 8431359. PMID 34437805.
  25. ^ Marinetti, Angela; Mathey, François (October 1988). "A Novel Entry to the PC-Double Bond: the"Phospha-Wittig" Reaction". Angewandte Chemie International Edition in English. 27 (10): 1382–1384. doi:10.1002/anie.198813821. ISSN 0570-0833.
  26. ^ Li, Jianfeng; Li, Xiaofei; Huang, Wen; Hu, Hongfan; Zhang, Jianying; Cui, Chunming (2012-11-05). "Synthesis, Structure, and Reactivity of a Monomeric Iminoalane". Chemistry - A European Journal. 18 (48): 15263–15266. doi:10.1002/chem.201203298. ISSN 0947-6539. PMID 23129126.
  27. Wilson, Daniel W. N.; Feld, Joey; Goicoechea, Jose M. (2020-09-09). "A Phosphanyl‐Phosphagallene that Functions as a Frustrated Lewis Pair". Angewandte Chemie. 132 (47): 21100–21104. doi:10.1002/ange.202008207. ISSN 0044-8249.
  28. ^ Price, Amy N.; Cowley, Michael J. (2016-03-15). "Base-Stabilized Phosphinidene Boranes by Silylium-Ion Abstraction". Chemistry - A European Journal. 22 (18): 6248–6252. doi:10.1002/chem.201600836. ISSN 0947-6539. PMID 26918876.
  29. Cowley, Alan H. (March 1987). "Multiple Bonding Involving Phosphorus; Some Recent Developments". Phosphorus and Sulfur and the Related Elements. 30 (1–2): 129–133. doi:10.1080/03086648708080539. ISSN 0308-664X.
  30. Weber, Lothar (1992-12-01). "The chemistry of diphosphenes and their heavy congeners: synthesis, structure, and reactivity". Chemical Reviews. 92 (8): 1839–1906. doi:10.1021/cr00016a008. ISSN 0009-2665.
  31. Sasamori, Takahiro; Tokitoh, Norihiro (2013-09-15). "A New Family of Multiple-Bond Compounds between Heavier Group 14 Elements". Bulletin of the Chemical Society of Japan. 86 (9): 1005–1021. doi:10.1246/bcsj.20130134. ISSN 0009-2673.
  32. Yadav, Sandeep; Saha, Sumana; Sen, Sakya S. (March 2016). "ChemInform Abstract: Compounds with Low-Valent p-Block Elements for Small Molecule Activation and Catalysis". ChemInform. 47 (14). doi:10.1002/chin.201614233. ISSN 0931-7597.
  33. Stephan, Douglas W. (2016-12-09). "The broadening reach of frustrated Lewis pair chemistry". Science. 354 (6317): aaf7229. doi:10.1126/science.aaf7229. ISSN 0036-8075. PMID 27940818. S2CID 45721140.
  34. Hanusch, Franziska; Groll, Lisa; Inoue, Shigeyoshi (2021). "Recent advances of group 14 dimetallenes and dimetallynes in bond activation and catalysis". Chemical Science. 12 (6): 2001–2015. doi:10.1039/d0sc03192e. ISSN 2041-6520. PMC 8179309. PMID 34163962.
  35. Weetman, Catherine (2020-11-19). "Main Group Multiple Bonds for Bond Activations and Catalysis". Chemistry – A European Journal. 27 (6): 1941–1954. doi:10.1002/chem.202002939. ISSN 0947-6539. PMC 7894548. PMID 32757381.
  36. Wells, R. D.; Gladfelter, W. L. (1997-03-18). "Pathways to Nanocrystalline III-V (13-15) Compound Semiconductors". Journal of Cluster Science. Fort Belvoir, VA. doi:10.1023/A:1022684024708.
  37. Malik, Afzaal, O’Brien*, Mohammad Azad, Mohammad, Paul (2010-05-19). "Precursor Chemistry for Main Group Elements in Semiconducting Materials". Chem. Rev. 110 (7): 4417–4446. doi:10.1021/cr900406f. PMID 20481563.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. Davy, Randall D.; Jaffrey, Kent L. (September 1994). "Aluminum-Nitrogen Multiple Bonds in Small AlNH Molecules: Structures and Vibrational Frequencies of AlNH2, AlNH3, and AlNH4". The Journal of Physical Chemistry. 98 (36): 8930–8936. doi:10.1021/j100087a019. ISSN 0022-3654.
  39. Davy, R. D.; Schaefer III, H. F. (2010-08-03). "ChemInform Abstract: Aluminum-Phosphorus Compounds with Low Coordination Numbers: Structures, Energies, and Vibrational Frequencies of the AlPH2, AlPH3, and AlPH4 Isomers and the H3Al-PH3 Adduct". ChemInform. 28 (28): no. doi:10.1002/chin.199728002. ISSN 0931-7597.
  40. Himmel, Hans-Jörg; Downs, Anthony J.; Green, Jennifer C.; Greene, Tim M. (2001). "Compounds featuring a bond between a Group 13 (M) and a Group 15 element (N or P) and with the formulae HmMNHn and HmMPHn: structural aspects and bonding". Journal of the Chemical Society, Dalton Transactions (5): 535–545. doi:10.1039/b008724f. ISSN 1472-7773.
  41. Himmel, Hans-Jörg; Schnöckel, Hansgeorg (2002-05-17). <2397::aid-chem2397>3.0.co;2-1 "Heats of Hydrogenation of Compounds Featuring Main Group Elements and with the Potential for Multiply Bonding". Chemistry - A European Journal. 8 (10): 2397–2705. doi:10.1002/1521-3765(20020517)8:10<2397::aid-chem2397>3.0.co;2-1. ISSN 0947-6539. PMID 12012422.
Category:
Group 13/15 multiple bonds Add topic