In probability theory , Kolmogorov's two-series theorem is a result about the convergence of random series. It follows from Kolmogorov's inequality and is used in one proof of the strong law of large numbers .
Statement of the theorem
Let
(
X
n
)
n
=
1
∞
{\displaystyle \left(X_{n}\right)_{n=1}^{\infty }}
be independent random variables with expected values
E
[
X
n
]
=
μ
n
{\displaystyle \mathbf {E} \left=\mu _{n}}
and variances
V
a
r
(
X
n
)
=
σ
n
2
{\displaystyle \mathbf {Var} \left(X_{n}\right)=\sigma _{n}^{2}}
, such that
∑
n
=
1
∞
μ
n
{\displaystyle \sum _{n=1}^{\infty }\mu _{n}}
converges in
R
{\displaystyle \mathbb {R} }
and
∑
n
=
1
∞
σ
n
2
{\displaystyle \sum _{n=1}^{\infty }\sigma _{n}^{2}}
converges in
R
{\displaystyle \mathbb {R} }
. Then
∑
n
=
1
∞
X
n
{\displaystyle \sum _{n=1}^{\infty }X_{n}}
converges in
R
{\displaystyle \mathbb {R} }
almost surely .
Proof
Assume WLOG
μ
n
=
0
{\displaystyle \mu _{n}=0}
. Set
S
N
=
∑
n
=
1
N
X
n
{\displaystyle S_{N}=\sum _{n=1}^{N}X_{n}}
, and we will see that
lim sup
N
S
N
−
lim inf
N
S
N
=
0
{\displaystyle \limsup _{N}S_{N}-\liminf _{N}S_{N}=0}
with probability 1.
For every
m
∈
N
{\displaystyle m\in \mathbb {N} }
,
lim sup
N
→
∞
S
N
−
lim inf
N
→
∞
S
N
=
lim sup
N
→
∞
(
S
N
−
S
m
)
−
lim inf
N
→
∞
(
S
N
−
S
m
)
≤
2
max
k
∈
N
|
∑
i
=
1
k
X
m
+
i
|
{\displaystyle \limsup _{N\to \infty }S_{N}-\liminf _{N\to \infty }S_{N}=\limsup _{N\to \infty }\left(S_{N}-S_{m}\right)-\liminf _{N\to \infty }\left(S_{N}-S_{m}\right)\leq 2\max _{k\in \mathbb {N} }\left|\sum _{i=1}^{k}X_{m+i}\right|}
Thus, for every
m
∈
N
{\displaystyle m\in \mathbb {N} }
and
ϵ
>
0
{\displaystyle \epsilon >0}
,
P
(
lim sup
N
→
∞
(
S
N
−
S
m
)
−
lim inf
N
→
∞
(
S
N
−
S
m
)
≥
ϵ
)
≤
P
(
2
max
k
∈
N
|
∑
i
=
1
k
X
m
+
i
|
≥
ϵ
)
=
P
(
max
k
∈
N
|
∑
i
=
1
k
X
m
+
i
|
≥
ϵ
2
)
≤
lim sup
N
→
∞
4
ϵ
−
2
∑
i
=
m
+
1
m
+
N
σ
i
2
=
4
ϵ
−
2
lim
N
→
∞
∑
i
=
m
+
1
m
+
N
σ
i
2
{\displaystyle {\begin{aligned}\mathbb {P} \left(\limsup _{N\to \infty }\left(S_{N}-S_{m}\right)-\liminf _{N\to \infty }\left(S_{N}-S_{m}\right)\geq \epsilon \right)&\leq \mathbb {P} \left(2\max _{k\in \mathbb {N} }\left|\sum _{i=1}^{k}X_{m+i}\right|\geq \epsilon \ \right)\\&=\mathbb {P} \left(\max _{k\in \mathbb {N} }\left|\sum _{i=1}^{k}X_{m+i}\right|\geq {\frac {\epsilon }{2}}\ \right)\\&\leq \limsup _{N\to \infty }4\epsilon ^{-2}\sum _{i=m+1}^{m+N}\sigma _{i}^{2}\\&=4\epsilon ^{-2}\lim _{N\to \infty }\sum _{i=m+1}^{m+N}\sigma _{i}^{2}\end{aligned}}}
While the second inequality is due to Kolmogorov's inequality .
By the assumption that
∑
n
=
1
∞
σ
n
2
{\displaystyle \sum _{n=1}^{\infty }\sigma _{n}^{2}}
converges, it follows that the last term tends to 0 when
m
→
∞
{\displaystyle m\to \infty }
, for every arbitrary
ϵ
>
0
{\displaystyle \epsilon >0}
.
References
Durrett, Rick. Probability: Theory and Examples. Duxbury advanced series, Third Edition, Thomson Brooks/Cole, 2005, Section 1.8, pp. 60โ69.
M. Loรจve, Probability theory , Princeton Univ. Press (1963) pp. Sect. 16.3
W. Feller, An introduction to probability theory and its applications , 2, Wiley (1971) pp. Sect. IX.9
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission ๐
โ