Misplaced Pages

Quasi-star

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Quasistar) Hypothetical early-universe star with a black hole core "Black hole star" redirects here. For black holes created from stars, see Stellar black hole. For stars that become black holes, see Supernova. For types of stars denser than neutron stars, see Exotic star. For the 1994 Soundgarden song, see Black Hole Sun. Not to be confused with a quasi-stellar object or quasar.
Size comparison of a hypothetical quasi-star to some of the largest known stars.
A quasi-star rendered with Celestia

A quasi-star (also called black hole star) is a hypothetical type of extremely large and luminous star that may have existed early in the history of the Universe. They are thought to have existed for around 7–10 million years due to their immense mass. Unlike modern stars, which are powered by nuclear fusion in their cores, a quasi-star's energy would come from material falling into a black hole at its core. They were first proposed in the 1960s and have since provided valuable insights into the early universe, galaxy formation, and the behavior of black holes. Although they have not been observed, they are considered to be a possible progenitor of supermassive black holes.

Formation and properties

A quasi-star would have resulted from the core of a large protostar collapsing into a black hole, where the outer layers of the protostar are massive enough to absorb the resulting burst of energy without being blown away or falling into the black hole, as occurs with modern supernovae. Such a star would have to be at least 1,000 solar masses (2.0×10 kg). Quasi-stars may have also formed from dark matter halos drawing in enormous amounts of gas via gravity, which can produce supermassive stars with tens of thousands of solar masses. Formation of quasi-stars could only happen early in the development of the Universe before hydrogen and helium were contaminated by heavier elements; thus, they may have been very massive Population III stars. Such stars would dwarf VY Canis Majoris, Mu Cephei and VV Cephei A, three among the largest known modern stars.

Once the black hole had formed at the protostar's core, it would continue generating a large amount of radiant energy from the infall of stellar material. This constant outburst of energy would counteract the force of gravity, creating an equilibrium similar to the one that supports modern fusion-based stars. Quasi-stars would have had a short maximum lifespan, approximately 7 million years, during which the core black hole would have grown to about 1,000–10,000 solar masses (2×10–2×10 kg). These intermediate-mass black holes have been suggested as the progenitors of modern supermassive black holes such as the one in the center of the Galaxy.

Quasi-stars are predicted to have had surface temperatures higher than 10,000 K (9,700 °C). At these temperatures, each one would be about as luminous as a small galaxy. As a quasi-star cools over time, its outer envelope would become transparent, until further cooling to a limiting temperature of 4,000 K (3,730 °C). This limiting temperature would mark the end of the quasi-star's life since there is no hydrostatic equilibrium at or below this limiting temperature. The object would then quickly dissipate, leaving behind the intermediate mass black hole.

See also

References

  1. ^ Battersby, Stephen (29 November 2007). "Biggest black holes may grow inside 'quasistars'". New Scientist.
  2. Ball, Warrick H.; Tout, Christopher A.; Żytkow, Anna N.; Eldridge, John J. (2011). "The structure and evolution of quasi-stars". Monthly Notices of the Royal Astronomical Society. 414 (3): 2751–2762. arXiv:1102.5098. Bibcode:2011MNRAS.414.2751B. doi:10.1111/j.1365-2966.2011.18591.x.
  3. Saplakoglu, Yasemin (29 September 2017). "Zeroing In on How Supermassive Black Holes Formed". Scientific American. Retrieved 8 April 2019.
  4. Johnson-Goh, Mara (20 November 2017). "Cooking up supermassive black holes in the early universe". Astronomy.com. Retrieved 8 April 2019.
  5. Ball, Warrick H.; Tout, Christopher A.; Żytkow, Anna N.; Eldridge, John J. (1 July 2011). "The structure and evolution of quasi-stars: The structure and evolution of quasi-stars". Monthly Notices of the Royal Astronomical Society. 414 (3): 2751–2762. arXiv:1102.5098. Bibcode:2011MNRAS.414.2751B. doi:10.1111/j.1365-2966.2011.18591.x.
  6. ^ Begelman, Mitch; Rossi, Elena; Armitage, Philip (2008). "Quasi-stars: accreting black holes inside massive envelopes". MNRAS. 387 (4): 1649–1659. arXiv:0711.4078. Bibcode:2008MNRAS.387.1649B. doi:10.1111/j.1365-2966.2008.13344.x. S2CID 12044015.
  7. Schleicher, Dominik R. G.; Palla, Francesco; Ferrara, Andrea; Galli, Daniele; Latif, Muhammad (25 May 2013). "Massive black hole factories: Supermassive and quasi-star formation in primordial halos". Astronomy & Astrophysics. 558: A59. arXiv:1305.5923. Bibcode:2013A&A...558A..59S. doi:10.1051/0004-6361/201321949. S2CID 119197147.

Further reading

External links

Black holes
Types
Size
Formation
Properties
Issues
Metrics
Alternatives
Analogs
Lists
Related
Notable
Stars
Formation
Evolution
Classification
Remnants
Hypothetical
Nucleosynthesis
Structure
Properties
Star systems
Earth-centric
observations
Lists
Related
Portals: Categories:
Quasi-star Add topic