In mathematics, physics, and theoretical computer graphics, tapering is a kind of shape deformation. Just as an affine transformation, such as scaling or shearing, is a first-order model of shape deformation, tapering is a higher order deformation just as twisting and bending. Tapering can be thought of as non-constant scaling by a given tapering function. The resultant deformations can be linear or nonlinear.
To create a nonlinear taper, instead of scaling in x and y for all z with constants as in:
let a and b be functions of z so that:
An example of a linear taper is , and a quadratic taper .
As another example, if the parametric equation of a cube were given by ƒ(t) = (x(t), y(t), z(t)), a nonlinear taper could be applied so that the cube's volume slowly decreases (or tapers) as the function moves in the positive z direction. For the given cube, an example of a nonlinear taper along z would be if, for instance, the function T(z) = 1/(a + bt) were applied to the cube's equation such that ƒ(t) = (T(z)x(t), T(z)y(t), T(z)z(t)), for some real constants a and b.
See also
References
- Shirley, Peter; Ashikhmin, Michael; Marschner, Steve (2009). Fundamentals of Computer Graphics (3rd ed.). CRC Press. p. 426. ISBN 9781568814698.
- Barr, Alan H. (July 1984). "Global and local deformations of solid primitives" (PDF). Computer Graphics. 18 (3): 21–30. doi:10.1145/964965.808573. Retrieved 4 May 2015.
External links
- , Computer Graphics Notes. University of Toronto. (See: Tapering).
- , 3D Transformations. Brown University. (See: Nonlinear deformations).
- , ScienceWorld article on Tapering in Image Synthesis.