Misplaced Pages

Voyager 2: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 10:44, 1 July 2024 editBenison (talk | contribs)Extended confirmed users, File movers, New page reviewers, Pending changes reviewers, Rollbackers44,354 editsm Reverted good faith edits by Iamnotblocked123 (talk): Unsourced, also WP:CRYSTALBALLTags: Twinkle Undo← Previous edit Latest revision as of 11:49, 16 January 2025 edit undoUwU.Raihanur (talk | contribs)305 editsm linked with more articlesTag: Visual edit 
(35 intermediate revisions by 25 users not shown)
Line 1: Line 1:
{{Short description|NASA "grand tour" planetary probe}} {{Short description|NASA space probe launched in 1977}}
{{good article}} {{good article}}
{{Italic title}} {{Italic title}}
Line 7: Line 7:
| name = ''Voyager 2'' | name = ''Voyager 2''
| image = Voyager spacecraft model.png | image = Voyager spacecraft model.png
| image_caption = Artist's rendering of the Voyager spacecraft design | image_caption = Artist's rendering of the ''Voyager'' spacecraft design
| image_alt = Artist's rendering of the Voyager spacecraft, a small-bodied spacecraft with a large, central dish and multiple arms and antennas extending from the dish | image_alt = Artist's rendering of the Voyager spacecraft, a small-bodied spacecraft with a large, central dish and multiple arms and antennas extending from the dish
| mission_type = Planetary exploration | mission_type = Planetary exploration
Line 15: Line 15:
| SATCAT = 10271<ref name="us national space science data center" /> | SATCAT = 10271<ref name="us national space science data center" />
| mission_duration = {{plainlist| | mission_duration = {{plainlist|
* {{time interval|20 August 1977 14:30:00|show=ymd|sep=,}} elapsed * {{time interval|20 August 1977 14:29:00|sep=,}} elapsed
* Planetary mission: {{time interval|20 August 1977|2 October 1989|show=ymd|sep=,}} * Planetary mission: {{time interval|20 August 1977|2 October 1989|show=ymd|sep=,}}
* Interstellar mission: {{time interval|October 2, 1989|show=ymd|sep=,}} elapsed * Interstellar mission: {{time interval|October 2, 1989|show=ymd|sep=,}} elapsed
Line 22: Line 22:
| manufacturer = ] | manufacturer = ]
| dry_mass = | dry_mass =
| launch_mass = {{convert|721.9|kg|lb}}<ref>{{cite web |url=https://solarsystem.nasa.gov/missions/voyager-2/in-depth/ |title=Voyager 2 |publisher=NASA's Solar System Exploration website |access-date=December 4, 2022 |archive-date=April 20, 2017 |archive-url=https://web.archive.org/web/20170420085656/https://solarsystem.nasa.gov/missions/voyager2/indepth |url-status=live }}</ref> | launch_mass = {{convert|721.9|kg|lb}}<ref name="national aeronautics and space administration">{{cite web |url=https://solarsystem.nasa.gov/missions/voyager-2/in-depth/ |title=Voyager 2 |publisher=NASA's Solar System Exploration website |access-date=December 4, 2022 |archive-date=April 20, 2017 |archive-url=https://web.archive.org/web/20170420085656/https://solarsystem.nasa.gov/missions/voyager2/indepth |url-status=live }}</ref>
| power = 470&nbsp;watts (at launch) | power = 470&nbsp;watts (at launch)
| launch_date = {{start date text|August 20, 1977, 14:29:00|timezone=yes}}&nbsp;UTC | launch_date = {{start date text|August 20, 1977, 14:29:00|timezone=yes}}&nbsp;UTC
Line 51: Line 51:
|distance = {{convert|4951|km|mi|abbr=on}} |distance = {{convert|4951|km|mi|abbr=on}}
|arrival_date = August 25, 1989}} |arrival_date = August 25, 1989}}
| programme = ] | programme = ''']'''<br><small>''Planetary Science Division''</small>
| previous_mission = ] | previous_mission = ]
| next_mission = ] | next_mission = ]
| programme2 = ''']'''
}} }}
{{Interstellar_probes_trajectory.svg}} {{Interstellar_probes_trajectory.svg}}


'''''Voyager 2''''' is a ] launched by ] on August 20, 1977, as a part of the ]. It was launched on a trajectory towards the ] ] and ] and enabled further encounters with the ] ] and ]. It remains the only spacecraft to have visited either of the ice giant planets, and was the ] to achieve Solar ], which will allow it to leave the ]. It has been sending scientific data to Earth for {{time interval|20 August 1977 12:56:00|show=ymd|sep=,}}, making it the oldest active space probe.<ref>{{Cite web |title=NASA's Voyager 1 Resumes Sending Engineering Updates to Earth |url=https://www.jpl.nasa.gov/news/nasas-voyager-1-resumes-sending-engineering-updates-to-earth |access-date=2024-06-22 |website=NASA/JPL |archive-date=April 22, 2024 |archive-url=https://web.archive.org/web/20240422174653/https://www.jpl.nasa.gov/news/nasas-voyager-1-resumes-sending-engineering-updates-to-earth |url-status=live }}</ref> Launched 16 days before its twin '']'', the primary mission of the spacecraft was to study the ] and its extended mission is to study interstellar space beyond the Sun's ]. '''''Voyager 2''''' is a ] launched by ] on August 20, 1977, as a part of the ]. It was launched on a ] towards the ] ] and ] and enabled further encounters with the ] ] and ]. It remains the only spacecraft to have visited either of the ice giant planets, and was the ] to achieve Solar ], which allowed it to leave the ]. Launched 16 days before its twin '']'', the primary mission of the spacecraft was to study the ] and its extended mission is to study ] beyond the ]'s ].


''Voyager 2'' successfully fulfilled its primary mission of visiting the ] in 1979, the ] in 1981, ] in 1986, and the ] in 1989. The spacecraft is now in its extended mission of studying the ]. It is at a distance of {{Convert|136.1|AU|e9km e9mi|sigfig=3|abbr=unit|lk=on}} from Earth {{as of|2024|06|lc=yes|df=US}}<!-- DO NOT UPDATE THIS MORE THAN ONCE PER MONTH -->.<ref>{{cite web|title=Voyager – Mission Status|url=https://voyager.jpl.nasa.gov/mission/status/|access-date=July 9, 2023|work=]|publisher=]|archive-date=January 1, 2018|archive-url=https://web.archive.org/web/20180101025244/https://voyager.jpl.nasa.gov/mission/status/|url-status=live}}</ref> ''Voyager 2'' successfully fulfilled its primary mission of visiting the ] in 1979, the ] in 1981, ] in 1986, and the ] in 1989. The spacecraft is now in its extended mission of studying the ]. It is at a distance of {{Convert|138.27|AU|e9km e9mi|sigfig=3|abbr=unit|lk=on}} from ] {{as of|2024|11|lc=yes|df=US}}<!-- DO NOT UPDATE THIS MORE THAN ONCE PER MONTH -->.<ref name="missionstatus">{{cite web|title=Voyager – Mission Status|url=https://voyager.jpl.nasa.gov/mission/status/|access-date=July 9, 2023|work=]|publisher=]|archive-date=January 1, 2018|archive-url=https://web.archive.org/web/20180101025244/https://voyager.jpl.nasa.gov/mission/status/|url-status=live}}</ref>


The probe entered the interstellar medium on November 5, 2018, at a distance of {{Convert|119.7|AU|e9mi e9km|abbr=unit|sigfig=3}} from the ]<ref>{{cite web |author=Staff |url=https://voyager.jpl.nasa.gov/where/index.html |title=Where are the Voyagers? |date=September 9, 2012 |publisher=] |access-date=September 9, 2012 |archive-date=March 10, 2017 |archive-url=https://web.archive.org/web/20170310054307/http://voyager.jpl.nasa.gov/where/index.html |url-status=live }}</ref> and moving at a velocity of {{convert|15.341|km/s|mph|abbr=on}}<ref>{{Cite web|url=https://voyager.jpl.nasa.gov/mission/status/|title=Voyager – Mission Status|website=voyager.jpl.nasa.gov|access-date=September 14, 2018|archive-date=January 1, 2018|archive-url=https://web.archive.org/web/20180101025244/https://voyager.jpl.nasa.gov/mission/status/|url-status=live}}</ref> relative to the Sun. ''Voyager 2'' has left the Sun's ] and is traveling through the ], though still inside the ], joining ''Voyager 1'', which had reached the interstellar medium in 2012.<ref>{{cite news |author=] |title=Voyager 2 reaches interstellar space – Iowa-led instrument detects plasma density jump, confirming spacecraft has entered the realm of the stars |url=https://www.eurekalert.org/pub_releases/2019-11/uoi-v2r103119.php |date=November 4, 2019 |work=] |access-date=November 4, 2019 |archive-date=April 13, 2020 |archive-url=https://web.archive.org/web/20200413080722/https://www.eurekalert.org/pub_releases/2019-11/uoi-v2r103119.php |url-status=live }}</ref><ref>{{cite news |last=Chang |first=Kenneth |title=Voyager 2's Discoveries From Interstellar Space – In its journey beyond the boundary of the solar wind's bubble, the probe observed some notable differences from its twin, Voyager 1. |url=https://www.nytimes.com/2019/11/04/science/voyager-2-interstellar-solar-wind.html |date=November 4, 2019 |work=] |access-date=November 5, 2019 |archive-date=April 13, 2020 |archive-url=https://web.archive.org/web/20200413080724/https://www.nytimes.com/2019/11/04/science/voyager-2-interstellar-solar-wind.html |url-status=live }}</ref><ref name="gill-2018">{{cite news |last=Gill |first=Victoria |title=Nasa's Voyager 2 probe 'leaves the Solar System' |url=https://www.bbc.com/news/science-environment-46502820 |date=December 10, 2018 |work=] |access-date=December 10, 2018 |archive-date=December 15, 2019 |archive-url=https://web.archive.org/web/20191215232828/https://www.bbc.com/news/science-environment-46502820 |url-status=live }}</ref><ref name="brown-2018">{{cite news |last1=Brown |first1=Dwayne |last2=Fox |first2=Karen |last3=Cofield |first3=Calia |last4=Potter |first4=Sean |title=Release 18–115 – NASA's Voyager 2 Probe Enters Interstellar Space |url=https://www.nasa.gov/press-release/nasa-s-voyager-2-probe-enters-interstellar-space |date=December 10, 2018 |work=] |access-date=December 10, 2018 |archive-date=June 27, 2023 |archive-url=https://web.archive.org/web/20230627023807/https://www.nasa.gov/press-release/nasa-s-voyager-2-probe-enters-interstellar-space/ |url-status=live }}</ref> ''Voyager 2'' has begun to provide the first direct measurements of the density and temperature of the interstellar ].<ref>{{cite news |url=https://www.sciencenews.org/view/generic/id/353199/description/At_last_Voyager_1_slips_into_interstellar_space |title=At last, Voyager 1 slips into interstellar space – Atom & Cosmos |work=] |date=September 12, 2013 |access-date=September 17, 2013 |archive-url=https://web.archive.org/web/20130915214546/http://www.sciencenews.org/view/generic/id/353199/description/At_last_Voyager_1_slips_into_interstellar_space |archive-date=September 15, 2013 |url-status=dead}}</ref> The probe entered the interstellar medium on November 5, 2018, at a distance of {{Convert|119.7|AU|e9mi e9km|abbr=unit|sigfig=3}} from the ]<ref>{{cite web |author=Staff |url=https://voyager.jpl.nasa.gov/where/index.html |title=Where are the Voyagers? |date=September 9, 2012 |publisher=] |access-date=September 9, 2012 |archive-date=March 10, 2017 |archive-url=https://web.archive.org/web/20170310054307/http://voyager.jpl.nasa.gov/where/index.html |url-status=live }}</ref> and moving at a velocity of {{convert|15.341|km/s|mph|abbr=on}}<ref name="missionstatus"/> relative to the Sun. ''Voyager 2'' has left the Sun's ] and is traveling through the ], though still inside the ], joining ''Voyager 1'', which had reached the interstellar medium in 2012.<ref>{{cite news |author=] |title=Voyager 2 reaches interstellar space – Iowa-led instrument detects plasma density jump, confirming spacecraft has entered the realm of the stars |url=https://www.eurekalert.org/pub_releases/2019-11/uoi-v2r103119.php |date=November 4, 2019 |work=] |access-date=November 4, 2019 |archive-date=April 13, 2020 |archive-url=https://web.archive.org/web/20200413080722/https://www.eurekalert.org/pub_releases/2019-11/uoi-v2r103119.php |url-status=live }}</ref><ref>{{cite news |last=Chang |first=Kenneth |title=Voyager 2's Discoveries From Interstellar Space – In its journey beyond the boundary of the solar wind's bubble, the probe observed some notable differences from its twin, Voyager 1. |url=https://www.nytimes.com/2019/11/04/science/voyager-2-interstellar-solar-wind.html |date=November 4, 2019 |work=] |access-date=November 5, 2019 |archive-date=April 13, 2020 |archive-url=https://web.archive.org/web/20200413080724/https://www.nytimes.com/2019/11/04/science/voyager-2-interstellar-solar-wind.html |url-status=live }}</ref><ref name="gill-2018">{{cite news |last=Gill |first=Victoria |title=Nasa's Voyager 2 probe 'leaves the Solar System' |url=https://www.bbc.com/news/science-environment-46502820 |date=December 10, 2018 |work=] |access-date=December 10, 2018 |archive-date=December 15, 2019 |archive-url=https://web.archive.org/web/20191215232828/https://www.bbc.com/news/science-environment-46502820 |url-status=live }}</ref><ref name="brown-2018">{{cite news |last1=Brown |first1=Dwayne |last2=Fox |first2=Karen |last3=Cofield |first3=Calia |last4=Potter |first4=Sean |title=Release 18–115 – NASA's Voyager 2 Probe Enters Interstellar Space |url=https://www.nasa.gov/press-release/nasa-s-voyager-2-probe-enters-interstellar-space |date=December 10, 2018 |work=] |access-date=December 10, 2018 |archive-date=June 27, 2023 |archive-url=https://web.archive.org/web/20230627023807/https://www.nasa.gov/press-release/nasa-s-voyager-2-probe-enters-interstellar-space/ |url-status=live }}</ref> ''Voyager 2'' has begun to provide the first direct measurements of the density and temperature of the interstellar ].<ref name=":353199">{{cite news |url=https://www.sciencenews.org/view/generic/id/353199/description/At_last_Voyager_1_slips_into_interstellar_space |title=At last, Voyager 1 slips into interstellar space – Atom & Cosmos |work=] |date=September 12, 2013 |access-date=September 17, 2013 |archive-url=https://web.archive.org/web/20130915214546/http://www.sciencenews.org/view/generic/id/353199/description/At_last_Voyager_1_slips_into_interstellar_space |archive-date=September 15, 2013 |url-status=dead}}</ref>


''Voyager 2'' remains in contact with Earth through the ].<ref>NASA {{webarchive|url=https://web.archive.org/web/20110502011335/http://voyager.jpl.nasa.gov/mission/index.html |date=May 2, 2011 }}</ref> Communications are the responsibility of Australia's ], located near ].<ref name="shannon stirone-2021">{{cite news |author1=]|title=Earth to Voyager 2: After a Year in the Darkness, We Can Talk to You Again – NASA's sole means of sending commands to the distant space probe, launched 44 years ago, is being restored on Friday. |url=https://www.nytimes.com/2021/02/12/science/nasa-voyager-deep-space-network.html |archive-url=https://ghostarchive.org/archive/20211228/https://www.nytimes.com/2021/02/12/science/nasa-voyager-deep-space-network.html |archive-date=December 28, 2021 |url-access=limited |date=February 12, 2021 |work=] |accessdate=February 14, 2021 }}{{cbignore}}</ref> ''Voyager 2'' remains in contact with Earth through the ].<ref>NASA {{webarchive|url=https://web.archive.org/web/20110502011335/http://voyager.jpl.nasa.gov/mission/index.html |date=May 2, 2011 }}</ref> Communications are the responsibility of ]'s ], located near ].<ref name="shannon stirone-2021">{{cite news |author1=]|title=Earth to Voyager 2: After a Year in the Darkness, We Can Talk to You Again – NASA's sole means of sending commands to the distant space probe, launched 44 years ago, is being restored on Friday. |url=https://www.nytimes.com/2021/02/12/science/nasa-voyager-deep-space-network.html |archive-url=https://ghostarchive.org/archive/20211228/https://www.nytimes.com/2021/02/12/science/nasa-voyager-deep-space-network.html |archive-date=December 28, 2021 |url-access=limited |date=February 12, 2021 |work=] |accessdate=February 14, 2021 }}{{cbignore}}</ref>


== History == == History ==
Line 83: Line 84:
==== Power ==== ==== Power ====
] ]
''Voyager 2'' is equipped with three ] (MHW RTGs). Each RTG includes 24 pressed ] spheres. At launch, each RTG provided enough heat to generate approximately 157 W of electrical power. Collectively, the RTGs supplied the spacecraft with 470 watts at launch (halving every 87.7 years). They were predicted to allow operations to continue until at least 2020, and continued to provide power to five scientific instruments through the early part of 2023. In April 2023 JPL began using a reservoir of backup power intended for an onboard safety mechanism. As a result, all five instruments are expected to continue operation through 2026.<ref name="nasa-1989" /><ref>{{cite web |title=Voyager 2 Craft Details |url=https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1977-076A |website=NASA-NSSDC-Spacecraft-Details |publisher=NASA |access-date=March 9, 2011 |archive-date=January 31, 2017 |archive-url=https://web.archive.org/web/20170131044213/http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1977-076A |url-status=live }}</ref><ref>{{cite journal |last1=Furlong |first1=Richard R. |last2=Wahlquist |first2=Earl J. |date=1999 |title=U.S. space missions using radioisotope power systems |journal=Nuclear News |volume=42 |issue=4 |pages=26–34 |url=http://www2.ans.org/pubs/magazines/nn/pdfs/1999-4-2.pdf |access-date=January 2, 2011 |archive-date=October 16, 2018 |archive-url=https://web.archive.org/web/20181016011258/http://www3.ans.org/pubs/magazines/nn/pdfs/1999-4-2.pdf |url-status=dead }}</ref><ref>{{cite web |title=NASA's Voyager Will Do More Science With New Power Strategy |url=https://www.jpl.nasa.gov/news/nasas-voyager-will-do-more-science-with-new-power-strategy |publisher=NASA Jet Propulsion Laboratory |access-date=April 28, 2023 |archive-date=April 27, 2023 |archive-url=https://web.archive.org/web/20230427182016/https://www.jpl.nasa.gov/news/nasas-voyager-will-do-more-science-with-new-power-strategy |url-status=live }}</ref> ''Voyager 2'' is equipped with three ] (MHW RTGs). Each RTG includes 24 pressed ] spheres. At launch, each RTG provided enough heat to generate approximately 157 W of electrical power. Collectively, the RTGs supplied the spacecraft with 470 watts at launch (halving every 87.7 years). They were predicted to allow operations to continue until at least 2020, and continued to provide power to five scientific instruments through the early part of 2023. In April 2023 JPL began using a reservoir of backup power intended for an onboard safety mechanism. As a result, all five instruments had been expected to continue operation through 2026.<ref name="nasa-1989" /><ref name="us national space science data center"/><ref>{{cite journal |last1=Furlong |first1=Richard R. |last2=Wahlquist |first2=Earl J. |date=1999 |title=U.S. space missions using radioisotope power systems |journal=Nuclear News |volume=42 |issue=4 |pages=26–34 |url=http://www2.ans.org/pubs/magazines/nn/pdfs/1999-4-2.pdf |access-date=January 2, 2011 |archive-date=October 16, 2018 |archive-url=https://web.archive.org/web/20181016011258/http://www3.ans.org/pubs/magazines/nn/pdfs/1999-4-2.pdf |url-status=dead }}</ref><ref name="newpower">{{cite web |title=NASA's Voyager Will Do More Science With New Power Strategy |url=https://www.jpl.nasa.gov/news/nasas-voyager-will-do-more-science-with-new-power-strategy |publisher=NASA Jet Propulsion Laboratory |access-date=April 28, 2023 |archive-date=April 27, 2023 |archive-url=https://web.archive.org/web/20230427182016/https://www.jpl.nasa.gov/news/nasas-voyager-will-do-more-science-with-new-power-strategy |url-status=live }}</ref> In October 2024 NASA announced that the plasma science instrument had been turned off, preserving power for the remaining four instruments.<ref>{{cite web |url=https://blogs.nasa.gov/voyager/2024/10/01/nasa-turns-off-science-instrument-to-save-voyager-2-power/ | title=NASA Turns Off Science Instrument to Save Voyager 2 Power |date=October 1, 2024 |publisher=NASA}}</ref>


==== Attitude control and propulsion ==== ==== Attitude control and propulsion ====
Line 243: Line 244:
|- |-


| {{yes|] ] <br />{{small|(active)}}}} | {{partial|] ] <br />{{small|(disabled)}}}}
| (PLS) | (PLS)
| style="text-align:left;" | Investigates the macroscopic properties of the plasma ions and measures electrons in the energy range from 5 eV to 1 keV. | style="text-align:left;" | Investigates the macroscopic properties of the plasma ions and measures electrons in the energy range from 5 eV to 1 keV.
Line 249: Line 250:
|- |-


| {{yes|Low Energy ] Instrument <br />{{small|(active)}}}} | {{yes|Low Energy ] Instrument <br />{{small|(active)}}}}
| (LECP) | (LECP)
| style="text-align:left;" | Measures the differential in energy fluxes and angular distributions of ions, electrons and the differential in energy ion composition. | style="text-align:left;" | Measures the differential in energy fluxes and angular distributions of ions, electrons and the differential in energy ion composition.
Line 443: Line 444:
|- |-
| {{0}}{{0}}17:25 | {{0}}{{0}}17:25
| ] flyby at 325,000&nbsp;km. | ] flyby at 325,000&nbsp;km.
|- |-
| {{0}}{{0}}17:25 | {{0}}{{0}}17:25
Line 520: Line 521:
|- |-
| 2023-07-18 | 2023-07-18
| Voyager 2 overtook ] as the second farthest spacecraft from the Sun.<ref>{{Cite web|title=Distance between the Sun and Voyager 2|url=https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Sun%27&START_TIME=%272023-07-01%27&STOP_TIME=%272023-08-01%27&STEP_SIZE=%271%20day%27&QUANTITIES=%2720%27&CENTER=%27500@-32%27|url-status=live|archive-url=https://web.archive.org/web/20230709162418/https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Sun%27&START_TIME=%272023-07-01%27&STOP_TIME=%272023-08-01%27&STEP_SIZE=%271%20day%27&QUANTITIES=%2720%27&CENTER=%27500@-32%27|archive-date=July 9, 2023|access-date=July 18, 2023}}</ref><ref>{{Cite web|title=Distance between the Sun and Pioneer 10|url=https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Sun%27&START_TIME=%272023-07-01%27&STOP_TIME=%272023-08-01%27&STEP_SIZE=%271%20day%27&QUANTITIES=%2720%27&CENTER=%27500@-23%27|url-status=live|archive-url=https://web.archive.org/web/20230714212211/https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Sun%27&START_TIME=%272023-07-01%27&STOP_TIME=%272023-08-01%27&STEP_SIZE=%271%20day%27&QUANTITIES=%2720%27&CENTER=%27500@-23%27|archive-date=July 14, 2023|access-date=July 18, 2023}}</ref> | Voyager 2 overtook ] as the second farthest spacecraft from the Sun.<ref name="sun-v2">{{Cite web|title=Distance between the Sun and Voyager 2|url=https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Sun%27&START_TIME=%272023-07-01%27&STOP_TIME=%272023-08-01%27&STEP_SIZE=%271%20day%27&QUANTITIES=%2720%27&CENTER=%27500@-32%27|url-status=live|archive-url=https://web.archive.org/web/20230709162418/https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Sun%27&START_TIME=%272023-07-01%27&STOP_TIME=%272023-08-01%27&STEP_SIZE=%271%20day%27&QUANTITIES=%2720%27&CENTER=%27500@-32%27|archive-date=July 9, 2023|access-date=July 18, 2023}}</ref><ref name="sun-p10">{{Cite web|title=Distance between the Sun and Pioneer 10|url=https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Sun%27&START_TIME=%272023-07-01%27&STOP_TIME=%272023-08-01%27&STEP_SIZE=%271%20day%27&QUANTITIES=%2720%27&CENTER=%27500@-23%27|url-status=live|archive-url=https://web.archive.org/web/20230714212211/https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Sun%27&START_TIME=%272023-07-01%27&STOP_TIME=%272023-08-01%27&STEP_SIZE=%271%20day%27&QUANTITIES=%2720%27&CENTER=%27500@-23%27|archive-date=July 14, 2023|access-date=July 18, 2023}}</ref>
|} |}
{{clear}} {{clear}}


=== Launch and trajectory === === Launch and trajectory ===
The ''Voyager 2'' probe was launched on August 20, 1977, by NASA from ] at ], aboard a ]/] ]. Two weeks later, the twin ''Voyager 1'' probe was launched on September 5, 1977. However, ''Voyager 1'' reached both Jupiter and Saturn sooner, as ''Voyager 2'' had been launched into a longer, more circular trajectory.<ref name="nasajpl">{{Cite web |url=https://voyager.jpl.nasa.gov/frequently-asked-questions/fact-sheet/ |access-date=June 9, 2024 |website=NASA/JPL |title=Voyager - Fact Sheet |archive-date=April 13, 2020 |archive-url=https://web.archive.org/web/20200413080739/https://voyager.jpl.nasa.gov/frequently-asked-questions/fact-sheet/ |url-status=live }}</ref><ref>{{Cite web |url=https://voyager.jpl.nasa.gov/frequently-asked-questions/fast-facts/ |access-date=June 9, 2024 |website=NASA/JPL |title=Voyager - Fast Facts |archive-date=May 22, 2022 |archive-url=https://web.archive.org/web/20220522131332/https://voyager.jpl.nasa.gov/frequently-asked-questions/fast-facts/ |url-status=live }}</ref> The ''Voyager 2'' probe was launched on August 20, 1977, by NASA from ] at ], aboard a ]/] ]. Two weeks later, the twin ''Voyager 1'' probe was launched on September 5, 1977. However, ''Voyager 1'' reached both Jupiter and Saturn sooner, as ''Voyager 2'' had been launched into a longer, more circular trajectory.<ref name="nasajpl">{{Cite web |url=https://voyager.jpl.nasa.gov/frequently-asked-questions/fact-sheet/ |access-date=June 9, 2024 |website=NASA/JPL |title=Voyager - Fact Sheet |archive-date=April 13, 2020 |archive-url=https://web.archive.org/web/20200413080739/https://voyager.jpl.nasa.gov/frequently-asked-questions/fact-sheet/ |url-status=live }}</ref><ref name="fastfacts">{{Cite web |url=https://voyager.jpl.nasa.gov/frequently-asked-questions/fast-facts/ |access-date=June 9, 2024 |website=NASA/JPL |title=Voyager - Fast Facts |archive-date=May 22, 2022 |archive-url=https://web.archive.org/web/20220522131332/https://voyager.jpl.nasa.gov/frequently-asked-questions/fast-facts/ |url-status=live }}</ref>


''Voyager 1''{{'}}s initial orbit had an aphelion of {{Convert|8.9|AU|e6mi e9km|abbr=unit}}<!-- gradually increasing to 9.1 AU because of perturbations -->, just a little short of Saturn's orbit of {{Convert|9.5|AU|e6mi e9km|abbr=unit}}. Whereas, ''Voyager 2''{{'}}s initial orbit had an aphelion of {{Convert|6.2|AU|e6mi e6km|abbr=unit}}<!-- gradually increasing to 6.7 AU because of perturbations -->, well short of Saturn's orbit.<ref> {{Webarchive|url=https://web.archive.org/web/20121007034731/https://ssd.jpl.nasa.gov/horizons.cgi |date=October 7, 2012 }}, JPL Solar System Dynamics (Ephemeris Type ELEMENTS; Target Body: Voyager ''n'' (spacecraft); Center: Sun (body center); Time Span: ''launch + 1 month'' to ''Jupiter encounter – 1 month'')</ref> ''Voyager 1''{{'}}s initial orbit had an ] of {{Convert|8.9|AU|e6mi e9km|abbr=unit}}<!-- gradually increasing to 9.1 AU because of perturbations -->, just a little short of Saturn's orbit of {{Convert|9.5|AU|e6mi e9km|abbr=unit}}. Whereas, ''Voyager 2''{{'}}s initial orbit had an aphelion of {{Convert|6.2|AU|e6mi e6km|abbr=unit}}<!-- gradually increasing to 6.7 AU because of perturbations -->, well short of Saturn's orbit.<ref> {{Webarchive|url=https://web.archive.org/web/20121007034731/https://ssd.jpl.nasa.gov/horizons.cgi |date=October 7, 2012 }}, JPL Solar System Dynamics (Ephemeris Type ELEMENTS; Target Body: Voyager ''n'' (spacecraft); Center: Sun (body center); Time Span: ''launch + 1 month'' to ''Jupiter encounter – 1 month'')</ref>


In April 1978, no commands were transmitted to ''Voyager 2'' for a period of time, causing the spacecraft to switch from its primary radio receiver to its backup receiver.<ref>{{cite web |title=40 Years Ago: Voyager 2 Explores Jupiter – NASA |url=https://www.nasa.gov/history/40-years-ago-voyager-2-explores-jupiter/ |access-date=April 4, 2024 |date=July 8, 2019 |archive-date=April 4, 2024 |archive-url=https://web.archive.org/web/20240404165002/https://www.nasa.gov/history/40-years-ago-voyager-2-explores-jupiter/ |url-status=live }}</ref> Sometime afterwards, the primary receiver failed altogether. The backup receiver was functional, but a failed capacitor in the receiver meant that it could only receive transmissions that were sent at a precise frequency, and this frequency would be affected by the Earth's rotation (due to the ]) and the onboard receiver's temperature, among other things.<ref>{{cite book |title=Planets Beyond: Discovering the Outer Solar System |last=Littmann |first=Mark |year=2004 |publisher=] |page=106 |url=https://books.google.com/books?id=RoJMadct4TQC&pg=PA106 |isbn=978-0-486-43602-9}}</ref><ref>{{cite magazine |title=Voyage to the tilted planet |last=Davies |first=John |date=January 23, 1986 |page=42 |magazine=New Scientist |url=https://books.google.com/books?id=rYIJJP7audkC&pg=PA42 }}{{dead link|date=April 2024 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> In April 1978, no commands were transmitted to ''Voyager 2'' for a period of time, causing the spacecraft to switch from its primary radio receiver to its backup receiver.<ref>{{cite web |title=40 Years Ago: Voyager 2 Explores Jupiter – NASA |url=https://www.nasa.gov/history/40-years-ago-voyager-2-explores-jupiter/ |access-date=April 4, 2024 |date=July 8, 2019 |archive-date=April 4, 2024 |archive-url=https://web.archive.org/web/20240404165002/https://www.nasa.gov/history/40-years-ago-voyager-2-explores-jupiter/ |url-status=live }}</ref> Sometime afterwards, the primary receiver failed altogether. The backup receiver was functional, but a failed capacitor in the receiver meant that it could only receive transmissions that were sent at a precise frequency, and this frequency would be affected by the Earth's rotation (due to the ]) and the onboard receiver's temperature, among other things.<ref>{{cite book |title=Planets Beyond: Discovering the Outer Solar System |last=Littmann |first=Mark |year=2004 |publisher=] |page=106 |url=https://books.google.com/books?id=RoJMadct4TQC&pg=PA106 |isbn=978-0-486-43602-9}}</ref><ref>{{cite magazine |title=Voyage to the tilted planet |last=Davies |first=John |date=January 23, 1986 |page=42 |magazine=New Scientist |url=https://books.google.com/books?id=rYIJJP7audkC&pg=PA42 }}{{dead link|date=April 2024 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
Line 545: Line 546:
Jupiter's ] was revealed as a complex storm moving in a counterclockwise direction. Other smaller storms and eddies were found throughout the banded clouds.<ref name="pdsseti">{{Cite web |title=Voyager Mission Description |url=https://pds-rings.seti.org/voyager/mission/#v2_jupiterencounter |access-date=2024-06-22 |website=pdsseti |archive-date=October 7, 2018 |archive-url=https://web.archive.org/web/20181007014859/https://pds-rings.seti.org/voyager/mission/#v2_jupiterencounter |url-status=live }}</ref> Jupiter's ] was revealed as a complex storm moving in a counterclockwise direction. Other smaller storms and eddies were found throughout the banded clouds.<ref name="pdsseti">{{Cite web |title=Voyager Mission Description |url=https://pds-rings.seti.org/voyager/mission/#v2_jupiterencounter |access-date=2024-06-22 |website=pdsseti |archive-date=October 7, 2018 |archive-url=https://web.archive.org/web/20181007014859/https://pds-rings.seti.org/voyager/mission/#v2_jupiterencounter |url-status=live }}</ref>


''Voyager 2'' returned images of Jupiter, as well as its moons ], ], ], ], and ].<ref name="national aeronautics and space administration" /> During a 10-hour "volcano watch", it confirmed ''Voyager 1''{{'}}s observations of active ], and revealed how the moon's surface had changed in the four months since the previous visit.<ref name="national aeronautics and space administration">National Aeronautics and Space Administration {{Webarchive|url=https://web.archive.org/web/20170420085656/https://solarsystem.nasa.gov/missions/voyager2/indepth |date=April 20, 2017 }} NASA Science: Solar System Exploration. Updated January 26, 26, 2018. Accessed December 12, 2018.</ref> Together, the Voyagers observed the eruption of nine volcanoes on Io, and there is evidence that other eruptions occurred between the two Voyager fly-bys.<ref name="jpl">{{cite web |url=https://voyager.jpl.nasa.gov/frequently-asked-questions/fact-sheet/ |title=Voyager Fact Sheet |work=JPL |access-date=December 11, 2018 |archive-date=April 13, 2020 |archive-url=https://web.archive.org/web/20200413080739/https://voyager.jpl.nasa.gov/frequently-asked-questions/fact-sheet/ |url-status=live }}</ref> ''Voyager 2'' returned images of Jupiter, as well as its moons ], ], ], ], and ].<ref name="national aeronautics and space administration" /> During a 10-hour "volcano watch", it confirmed ''Voyager 1''{{'}}s observations of active ], and revealed how the moon's surface had changed in the four months since the previous visit.<ref name="national aeronautics and space administration"/> Together, the Voyagers observed the eruption of nine volcanoes on Io, and there is evidence that other eruptions occurred between the two Voyager fly-bys.<ref name="nasajpl"/>


Jupiter's moon ] displayed a large number of intersecting linear features in the low-resolution photos from ''Voyager 1''. At first, scientists believed the features might be deep cracks, caused by crustal rifting or tectonic processes. Closer high-resolution photos from ''Voyager 2'', however, were puzzling: the features lacked topographic relief, and one scientist said they "might have been painted on with a felt marker".<ref name="jpl" /> Europa is internally active due to tidal heating at a level about one-tenth that of Io. Europa is thought to have a thin crust (less than {{convert|30|km|mi|abbr=on}} thick) of water ice, possibly floating on a {{Convert|50|km|mi|abbr=unit|adj=on}}-deep ocean.<ref>{{Cite web |url=https://voyager.jpl.nasa.gov/frequently-asked-questions/fact-sheet/ |access-date=June 9, 2024 |website=NASA/JPL |title=Voyager – Fact Sheet |archive-date=April 13, 2020 |archive-url=https://web.archive.org/web/20200413080739/https://voyager.jpl.nasa.gov/frequently-asked-questions/fact-sheet/ |url-status=live }}</ref><ref>{{Cite web |url=https://voyager.jpl.nasa.gov/frequently-asked-questions/fast-facts/ |access-date=June 9, 2024 |website=NASA/JPL |title=Voyager – Fast Facts |archive-date=May 22, 2022 |archive-url=https://web.archive.org/web/20220522131332/https://voyager.jpl.nasa.gov/frequently-asked-questions/fast-facts}} </ref> Jupiter's moon ] displayed a large number of intersecting linear features in the low-resolution photos from ''Voyager 1''. At first, scientists believed the features might be deep cracks, caused by crustal rifting or tectonic processes. Closer high-resolution photos from ''Voyager 2'', however, were puzzling: the features lacked topographic relief, and one scientist said they "might have been painted on with a felt marker".<ref name="nasajpl" /> Europa is internally active due to tidal heating at a level about one-tenth that of Io. Europa is thought to have a thin crust (less than {{convert|30|km|mi|abbr=on}} thick) of water ice, possibly floating on a {{Convert|50|km|mi|abbr=unit|adj=on}}-deep ocean.<ref name="nasajpl"/><ref name="fastfacts"/>


Two new, small satellites, ] and ], were found orbiting just outside the ring.<ref name="jpl" /> A third new satellite, ], was discovered between the orbits of Amalthea and Io.<ref name="jpl" /> Two new, small satellites, ] and ], were found orbiting just outside the ring.<ref name="nasajpl" /> A third new satellite, ], was discovered between the orbits of Amalthea and Io.<ref name="nasajpl" />


{{Gallery| align = center {{Gallery| align = center
Line 563: Line 564:
The closest approach to Saturn occurred at 03:24:05 UT on August 26, 1981.<ref>{{cite web |url=https://nssdc.gsfc.nasa.gov/nmc/EventQuery.jsp |title=NASA – NSSDCA – Master Catalog – Event Query |website=nssdc.gsfc.nasa.gov |access-date=October 5, 2018 |archive-date=March 26, 2019 |archive-url=https://web.archive.org/web/20190326020912/https://nssdc.gsfc.nasa.gov/nmc/EventQuery.jsp |url-status=live }}</ref> When ''Voyager 2'' passed behind Saturn, viewed from Earth, it utilized its radio link to investigate Saturn's upper atmosphere, gathering data on both temperature and pressure. In the highest regions of the atmosphere, where the pressure was measured at {{Convert|70|mbar|psi|abbr=unit}},<ref>{{cite web |title=Saturn Approach |url=https://voyager.jpl.nasa.gov/mission/science/saturn/ |publisher=] |access-date=September 8, 2023 |archive-url=https://web.archive.org/web/20230809220343/https://voyager.jpl.nasa.gov/mission/science/saturn/ |archive-date=August 9, 2023 |url-status=live}}</ref> ''Voyager 2'' recorded a temperature of {{Convert|82|K|C F|abbr=unit|lk=on}}. Deeper within the atmosphere, where the pressure was recorded to be {{Convert|1200|mbar|psi|abbr=unit}}, the temperature rose to {{Convert|143|K|C F|abbr=unit}}.<ref name="jet propulsion laboratory" /> The spacecraft also observed that the north pole was approximately {{Convert|10|C-change|F-change}} cooler at {{Convert|100|mbar|psi|abbr=unit}} than mid-latitudes, a variance potentially attributable to seasonal shifts<ref name="jet propulsion laboratory" /> (''see also ]''). The closest approach to Saturn occurred at 03:24:05 UT on August 26, 1981.<ref>{{cite web |url=https://nssdc.gsfc.nasa.gov/nmc/EventQuery.jsp |title=NASA – NSSDCA – Master Catalog – Event Query |website=nssdc.gsfc.nasa.gov |access-date=October 5, 2018 |archive-date=March 26, 2019 |archive-url=https://web.archive.org/web/20190326020912/https://nssdc.gsfc.nasa.gov/nmc/EventQuery.jsp |url-status=live }}</ref> When ''Voyager 2'' passed behind Saturn, viewed from Earth, it utilized its radio link to investigate Saturn's upper atmosphere, gathering data on both temperature and pressure. In the highest regions of the atmosphere, where the pressure was measured at {{Convert|70|mbar|psi|abbr=unit}},<ref>{{cite web |title=Saturn Approach |url=https://voyager.jpl.nasa.gov/mission/science/saturn/ |publisher=] |access-date=September 8, 2023 |archive-url=https://web.archive.org/web/20230809220343/https://voyager.jpl.nasa.gov/mission/science/saturn/ |archive-date=August 9, 2023 |url-status=live}}</ref> ''Voyager 2'' recorded a temperature of {{Convert|82|K|C F|abbr=unit|lk=on}}. Deeper within the atmosphere, where the pressure was recorded to be {{Convert|1200|mbar|psi|abbr=unit}}, the temperature rose to {{Convert|143|K|C F|abbr=unit}}.<ref name="jet propulsion laboratory" /> The spacecraft also observed that the north pole was approximately {{Convert|10|C-change|F-change}} cooler at {{Convert|100|mbar|psi|abbr=unit}} than mid-latitudes, a variance potentially attributable to seasonal shifts<ref name="jet propulsion laboratory" /> (''see also ]'').


After its Saturn fly-by, ''Voyager 2''s scan platform experienced an anomaly causing its azimuth actuator to seize. This malfunction led to some data loss and posed challenges for the spacecraft's continued mission. The anomaly was traced back to a combination of issues, including a design flaw in the actuator shaft bearing and gear lubrication system, corrosion, and debris build-up. While overuse and depleted lubricant were factors,<ref>{{cite journal |last1=Laeser |first1=Richard P. |publisher=] |title=Engineering the voyager uranus mission |journal=] |year=1987 |volume=16 |pages=75–82 |doi=10.1016/0094-5765(87)90096-8 |url=https://archive.org/details/sim_acta-astronautica_1987_16/page/80/mode/2up |access-date=September 8, 2023 |bibcode=1986inns.iafcQ....L}}</ref> other elements, such as dissimilar metal reactions and a lack of relief ports, compounded the problem. Engineers on the ground were able to issue a series of commands, rectifying the issue to a degree that allowed the scan platform to resume its function.<ref>{{cite web |author1=Jet Propulsion Laboratory |author1-link=JPL |title=Lesson 394: Voyager Scan Platform Problems |url=https://llis.nasa.gov/lesson/394 |website=NASA Public Lessons Learned System |publisher=] |access-date=September 8, 2023 |archive-url=https://web.archive.org/web/20230908075606/https://llis.nasa.gov/lesson/394 |archive-date=September 8, 2023 |date=May 30, 1995 |url-status=live}}</ref> ''Voyager 2'', which would have been diverted to perform the Titan flyby if ''Voyager 1'' had been unable to, did not pass near Titan due to the malfunction, and subsequently, proceeded with its mission to explore the Uranian system.<ref>{{cite book|author=Bell, Jim|title=The Interstellar Age: Inside the Forty-Year Voyager Mission|url=https://books.google.com/books?id=KXPoAwAAQBAJ&pg=PT93|date=February 24, 2015|publisher=Penguin Publishing Group|isbn=978-0-698-18615-6|page=93|url-status=live|archive-url=https://web.archive.org/web/20160904191620/https://books.google.com/books?id=KXPoAwAAQBAJ&pg=PT93|archive-date=September 4, 2016}}</ref>{{rp|94}} After its Saturn fly-by, ''Voyager 2''{{'}}s scan platform experienced an anomaly causing its azimuth actuator to seize. This malfunction led to some data loss and posed challenges for the spacecraft's continued mission. The anomaly was traced back to a combination of issues, including a design flaw in the actuator shaft bearing and gear lubrication system, corrosion, and debris build-up. While overuse and depleted lubricant were factors,<ref>{{cite journal |last1=Laeser |first1=Richard P. |publisher=] |title=Engineering the voyager uranus mission |journal=] |year=1987 |volume=16 |pages=75–82 |doi=10.1016/0094-5765(87)90096-8 |url=https://archive.org/details/sim_acta-astronautica_1987_16/page/80/mode/2up |access-date=September 8, 2023 |bibcode=1986inns.iafcQ....L}}</ref> other elements, such as dissimilar metal reactions and a lack of relief ports, compounded the problem. Engineers on the ground were able to issue a series of commands, rectifying the issue to a degree that allowed the scan platform to resume its function.<ref>{{cite web |author1=Jet Propulsion Laboratory |author1-link=JPL |title=Lesson 394: Voyager Scan Platform Problems |url=https://llis.nasa.gov/lesson/394 |website=NASA Public Lessons Learned System |publisher=] |access-date=September 8, 2023 |archive-url=https://web.archive.org/web/20230908075606/https://llis.nasa.gov/lesson/394 |archive-date=September 8, 2023 |date=May 30, 1995 |url-status=live}}</ref> ''Voyager 2'', which would have been diverted to perform the Titan flyby if ''Voyager 1'' had been unable to, did not pass near Titan due to the malfunction, and subsequently, proceeded with its mission to explore the Uranian system.<ref>{{cite book|author=Bell, Jim|title=The Interstellar Age: Inside the Forty-Year Voyager Mission|url=https://books.google.com/books?id=KXPoAwAAQBAJ&pg=PT93|date=February 24, 2015|publisher=Penguin Publishing Group|isbn=978-0-698-18615-6|page=93|url-status=live|archive-url=https://web.archive.org/web/20160904191620/https://books.google.com/books?id=KXPoAwAAQBAJ&pg=PT93|archive-date=September 4, 2016}}</ref>{{rp|94}}


{{Gallery| align = center {{Gallery| align = center
Line 581: Line 582:
When ''Voyager 2'' visited Uranus, much of its cloud features were hidden by a layer of haze; however, false-color and contrast-enhanced images show bands of concentric clouds around its south pole. This area was also found to radiate large amounts of ultraviolet light, a phenomenon that is called "dayglow". The average atmospheric temperature is about {{Convert|60|K|F C|abbr=unit}}. The illuminated and dark poles, and most of the planet, exhibit nearly the same temperatures at the cloud tops.<ref name="elizabeth landau" /> When ''Voyager 2'' visited Uranus, much of its cloud features were hidden by a layer of haze; however, false-color and contrast-enhanced images show bands of concentric clouds around its south pole. This area was also found to radiate large amounts of ultraviolet light, a phenomenon that is called "dayglow". The average atmospheric temperature is about {{Convert|60|K|F C|abbr=unit}}. The illuminated and dark poles, and most of the planet, exhibit nearly the same temperatures at the cloud tops.<ref name="elizabeth landau" />


The ''Voyager 2'' Planetary Radio Astronomy (PRA) experiment observed 140 lightning flashes, or Uranian electrostatic discharges with a frequency of 0.9-40 MHz.<ref name="aplin-2020">{{cite journal |last1=Aplin |first1=K.L. |last2=Fischer |first2=G. |last3=Nordheim |first3=T.A. |last4=Konovalenko | first4=A. |last5=Zakharenko |first5=V. |last6=Zarka |first6= P.|title=Atmospheric Electricity at the Ice Giants |journal=Space Science Reviews |date=2020 |volume=216 |issue=2 |page=26 |doi=10.1007/s11214-020-00647-0 |arxiv=1907.07151 |bibcode=2020SSRv..216...26A }}</ref><ref name="zarka-1986">{{cite journal |last1=Zarka |first1=P. |last2=Pederson |first2=B.M. |title=Radio detection of uranian lightning by Voyager 2 |journal=Nature |date=1986 |volume=323 |issue=6089 |page=605-608 |doi=10.1038/323605a0 |bibcode=1986Natur.323..605Z }}</ref> The UEDs were detected from 600,000&nbsp;km of Uranus over 24 hours, most of which were not visible.<ref name="aplin-2020" /> However, microphysical modeling suggests that Uranian lightning occurs in convective storms occurring in deep troposphere water clouds.<ref name="aplin-2020" /><ref>{{cite journal |last1=Aglyamov |first1=Y.S. |last2=Lunine |first2=J. |last3=Atreya |first3=S. |last4=Guillot | first4=T. |last5=Becker |first5=H.N. |last6=Levin |first6=S.|last7=Bolton |first7=S.J. |title=Atmospheric Electricity at the Ice Giants |journal=Space Science Reviews |date=2020 |volume=216 |issue=2 |doi=10.1007/s11214-020-00647-0 |arxiv=1907.07151 |bibcode=2020SSRv..216...26A }}</ref> If this is the case, lightning will not be visible due to the thick cloud layers above the troposphere.<ref name="zarka-1986" /> Uranian lightning has a power of around 10<sup>8</sup> W, emits 1×10^7 J – 2×10^7 J of energy, and lasts an average of 120 ms.<ref name="zarka-1986" /> The ''Voyager 2'' Planetary Radio Astronomy (PRA) experiment observed 140 lightning flashes, or Uranian electrostatic discharges with a frequency of 0.9-40 MHz.<ref name="aplin-2020">{{cite journal |last1=Aplin |first1=K.L. |last2=Fischer |first2=G. |last3=Nordheim |first3=T.A. |last4=Konovalenko | first4=A. |last5=Zakharenko |first5=V. |last6=Zarka |first6= P.|title=Atmospheric Electricity at the Ice Giants |journal=Space Science Reviews |date=2020 |volume=216 |issue=2 |page=26 |doi=10.1007/s11214-020-00647-0 |arxiv=1907.07151 |bibcode=2020SSRv..216...26A }}</ref><ref name="zarka-1986">{{cite journal |last1=Zarka |first1=P. |last2=Pederson |first2=B.M. |title=Radio detection of uranian lightning by Voyager 2 |journal=Nature |date=1986 |volume=323 |issue=6089 |page=605-608 |doi=10.1038/323605a0 |bibcode=1986Natur.323..605Z }}</ref> The UEDs were detected from 600,000&nbsp;km of Uranus over 24 hours, most of which were not visible.<ref name="aplin-2020" /> However, microphysical modeling suggests that Uranian lightning occurs in convective storms occurring in deep troposphere water clouds.<ref name="aplin-2020" /> If this is the case, lightning will not be visible due to the thick cloud layers above the troposphere.<ref name="zarka-1986" /> Uranian lightning has a power of around 10<sup>8</sup> W, emits 1×10^7 J – 2×10^7 J of energy, and lasts an average of 120 ms.<ref name="zarka-1986" />


Detailed images from ''Voyager 2''{{'}}s flyby of the Uranian moon ] showed huge canyons made from ].<ref name="elizabeth landau">Elizabeth Landau (2016) {{Webarchive|url=https://web.archive.org/web/20170505052650/https://www.nasa.gov/feature/jpl/voyager-mission-celebrates-30-years-since-uranus/ |date=May 5, 2017 }} ], January 22, 2016. Accessed December 11, 2018</ref> One hypothesis suggests that Miranda might consist of a reaggregation of material following an earlier event when Miranda was shattered into pieces by a violent impact.<ref name="elizabeth landau" /> Detailed images from ''Voyager 2''{{'}}s flyby of the Uranian moon ] showed huge canyons made from ].<ref name="elizabeth landau">Elizabeth Landau (2016) {{Webarchive|url=https://web.archive.org/web/20170505052650/https://www.nasa.gov/feature/jpl/voyager-mission-celebrates-30-years-since-uranus/ |date=May 5, 2017 }} ], January 22, 2016. Accessed December 11, 2018</ref> One hypothesis suggests that Miranda might consist of a reaggregation of material following an earlier event when Miranda was shattered into pieces by a violent impact.<ref name="elizabeth landau" />


''Voyager 2'' discovered two previously unknown Uranian rings.<ref name="elizabeth landau" /><ref name="voyager 2 mission team">Voyager 2 Mission Team (2012) {{Webarchive|url=https://web.archive.org/web/20190524214544/https://solarsystem.nasa.gov/news/184/1986-voyager-at-uranus/ |date=May 24, 2019 }} NASA Science: Solar System Exploration, December 14, 2012. Accessed December 11, 2018.</ref> Measurements showed that the Uranian rings are different from those at Jupiter and Saturn. The Uranian ring system might be relatively young, and it did not form at the same time that Uranus did. The particles that make up the rings might be the remnants of a moon that was broken up by either a high-velocity impact or ].<ref name="nasajpl"/><ref>{{Cite web |url=https://voyager.jpl.nasa.gov/frequently-asked-questions/fast-facts/ |access-date=June 9, 2024 |website=NASA/JPL |title=Voyager - Fast Facts |archive-date=May 22, 2022 |archive-url=https://web.archive.org/web/20220522131332/https://voyager.jpl.nasa.gov/frequently-asked-questions/fast-facts}}</ref> ''Voyager 2'' discovered two previously unknown Uranian rings.<ref name="elizabeth landau" /><ref name="voyager 2 mission team">Voyager 2 Mission Team (2012) {{Webarchive|url=https://web.archive.org/web/20190524214544/https://solarsystem.nasa.gov/news/184/1986-voyager-at-uranus/ |date=May 24, 2019 }} NASA Science: Solar System Exploration, December 14, 2012. Accessed December 11, 2018.</ref> Measurements showed that the Uranian rings are different from those at Jupiter and Saturn. The Uranian ring system might be relatively young, and it did not form at the same time that Uranus did. The particles that make up the rings might be the remnants of a moon that was broken up by either a high-velocity impact or ].<ref name="nasajpl"/><ref name="fastfacts"/>


In March 2020, NASA astronomers reported the detection of a large atmospheric magnetic bubble, also known as a ], released into ] from the planet ], after reevaluating old data recorded during the flyby.<ref>{{cite news |last=Hatfield |first=Miles |title=Revisiting Decades-Old Voyager 2 Data, Scientists Find One More Secret – Eight and a half years into its grand tour of the solar system, NASA's Voyager 2 spacecraft was ready for another encounter. It was Jan. 24, 1986, and soon it would meet the mysterious seventh planet, icy-cold Uranus. |url=https://www.nasa.gov/feature/goddard/2020/revisiting-decades-old-voyager-2-data-scientists-find-one-more-secret |date=March 25, 2020 |work=] |access-date=March 27, 2020 |archive-date=March 27, 2020 |archive-url=https://web.archive.org/web/20200327030510/https://www.nasa.gov/feature/goddard/2020/revisiting-decades-old-voyager-2-data-scientists-find-one-more-secret |url-status=live }}</ref><ref>{{cite news |last=Andrews |first=Robin George |title=Uranus Ejected a Giant Plasma Bubble During Voyager 2's Visit – The planet is shedding its atmosphere into the void, a signal that was recorded but overlooked in 1986 when the robotic spacecraft flew past. |url=https://www.nytimes.com/2020/03/27/science/uranus-bubble-voyager.html |date=March 27, 2020 |work=] |access-date=March 27, 2020 |archive-date=March 27, 2020 |archive-url=https://web.archive.org/web/20200327215013/https://www.nytimes.com/2020/03/27/science/uranus-bubble-voyager.html |url-status=live }}</ref> In March 2020, NASA astronomers reported the detection of a large atmospheric magnetic bubble, also known as a ], released into ] from the planet ], after reevaluating old data recorded during the flyby.<ref>{{cite news |last=Hatfield |first=Miles |title=Revisiting Decades-Old Voyager 2 Data, Scientists Find One More Secret – Eight and a half years into its grand tour of the solar system, NASA's Voyager 2 spacecraft was ready for another encounter. It was Jan. 24, 1986, and soon it would meet the mysterious seventh planet, icy-cold Uranus. |url=https://www.nasa.gov/feature/goddard/2020/revisiting-decades-old-voyager-2-data-scientists-find-one-more-secret |date=March 25, 2020 |work=] |access-date=March 27, 2020 |archive-date=March 27, 2020 |archive-url=https://web.archive.org/web/20200327030510/https://www.nasa.gov/feature/goddard/2020/revisiting-decades-old-voyager-2-data-scientists-find-one-more-secret |url-status=live }}</ref><ref>{{cite news |last=Andrews |first=Robin George |title=Uranus Ejected a Giant Plasma Bubble During Voyager 2's Visit – The planet is shedding its atmosphere into the void, a signal that was recorded but overlooked in 1986 when the robotic spacecraft flew past. |url=https://www.nytimes.com/2020/03/27/science/uranus-bubble-voyager.html |date=March 27, 2020 |work=] |access-date=March 27, 2020 |archive-date=March 27, 2020 |archive-url=https://web.archive.org/web/20200327215013/https://www.nytimes.com/2020/03/27/science/uranus-bubble-voyager.html |url-status=live }}</ref>
Line 600: Line 601:
{{Further|Exploration of Neptune}} {{Further|Exploration of Neptune}}


Following a mid-course correction in 1987, ''Voyager 2''{{'}}s closest approach to Neptune occurred on August 25, 1989.<ref>{{cite news |title=Voyager Steered Toward Neptune |url=https://www.newspapers.com/image/555835 |access-date=December 6, 2017 |work=Ukiah Daily Journal |date=March 15, 1987 |archive-date=December 7, 2017 |archive-url=https://web.archive.org/web/20171207085743/http://www.newspapers.com/image/555835/ |url-status=live }}</ref><ref>{{cite web |url=https://voyager.jpl.nasa.gov/news/factsheet.html |title=Fact Sheet |publisher=JPL |access-date=March 3, 2016 |archive-date=November 29, 2016 |archive-url=https://web.archive.org/web/20161129230752/http://voyager.jpl.nasa.gov/news/factsheet.html |url-status=live }}</ref><ref>{{Harvnb|Nardo|2002|p=15|Ref=none}}</ref> Through repeated computerized test simulations of trajectories through the Neptunian system conducted in advance, flight controllers determined the best way to route ''Voyager 2'' through the Neptune-Triton system. Since the plane of the orbit of Triton is tilted significantly with respect to the plane of the ecliptic, through mid-course corrections, ''Voyager 2'' was directed into a path about {{Convert|4950|km|mi|abbr=unit}} above the north pole of Neptune.<ref name="national aeronautics and space administration-2" /><ref>{{cite web |title=Neptune |url=https://voyager.jpl.nasa.gov/science/neptune.html |publisher=Jet Propulsion Laboratory |access-date=March 3, 2016 |archive-date=March 4, 2016 |archive-url=https://web.archive.org/web/20160304090349/http://voyager.jpl.nasa.gov/science/neptune.html |url-status=live }}</ref> Five hours after ''Voyager 2'' made its closest approach to Neptune, it performed a close fly-by of ], the larger of Neptune's two originally known moons, passing within about {{Convert|40000|km|mi|abbr=unit}}.<ref name="national aeronautics and space administration-2">] {{Webarchive|url=https://web.archive.org/web/20180909173736/https://voyager.jpl.nasa.gov/mission/science/neptune/ |date=September 9, 2018 }} NASA Jet Propulsion Laboratory: California Institute of Technology. Accessed December 12, 2018.</ref> Following a course correction in 1987, ''Voyager 2''{{'}}s closest approach to Neptune occurred on August 25, 1989.<ref>{{cite news |title=Voyager Steered Toward Neptune |url=https://www.newspapers.com/image/555835 |access-date=December 6, 2017 |work=Ukiah Daily Journal |date=March 15, 1987 |archive-date=December 7, 2017 |archive-url=https://web.archive.org/web/20171207085743/http://www.newspapers.com/image/555835/ |url-status=live }}</ref><ref name="nasajpl"/> Through repeated computerized test simulations of trajectories through the Neptunian system conducted in advance, flight controllers determined the best way to route ''Voyager 2'' through the Neptune–Triton system. Since the plane of the orbit of Triton is tilted significantly with respect to the plane of the ecliptic; through course corrections, ''Voyager 2'' was directed into a path about {{Convert|4950|km|mi|abbr=unit}} above the north pole of Neptune.<ref name="national aeronautics and space administration-2" /><ref>{{cite web |title=Neptune |url=https://voyager.jpl.nasa.gov/science/neptune.html |publisher=Jet Propulsion Laboratory |access-date=March 3, 2016 |archive-date=March 4, 2016 |archive-url=https://web.archive.org/web/20160304090349/http://voyager.jpl.nasa.gov/science/neptune.html |url-status=live }}</ref> Five hours after ''Voyager 2'' made its closest approach to Neptune, it performed a close fly-by of ], Neptune's largest moon, passing within about {{Convert|40000|km|mi|abbr=unit}}.<ref name="national aeronautics and space administration-2">] {{Webarchive|url=https://web.archive.org/web/20180909173736/https://voyager.jpl.nasa.gov/mission/science/neptune/ |date=September 9, 2018 }} NASA Jet Propulsion Laboratory: California Institute of Technology. Accessed December 12, 2018.</ref>


In 1989, the ''Voyager 2'' Planetary Radio Astronomy (PRA) experiment observed around 60 lightning flashes, or Neptunian electrostatic discharges emitting energies over 7X10^8 J.<ref>{{cite journal |last1=Borucki |first1=W.J. |title=Predictions of lightning activity at Neptune |journal=Geophysical Research Letters |date=1989 |volume=16 |issue=8 |page=937-939 |doi=10.1029/gl016i008p00937|bibcode=1989GeoRL..16..937B }}</ref> A plasma wave system (PWS) detected 16 electromagnetic wave events with a frequency range of 50&nbsp;Hz – 12&nbsp;kHz at magnetic latitudes 7˚-33˚.<ref name="aplin-2020" /><ref name="gurnett-1990">{{cite journal |title=Whistlers in Neptune's magnetosphere: Evidence of atmospheric lightning |journal=Journal of Geophysical Research: Space Physics |date=1990 |volume=95 |page=20967-20976 |doi=10.1029/ja095ia12p20967|bibcode=1990JGR....9520967G |hdl=2060/19910002329 |hdl-access=free |last1=Gurnett |first1=D. A. |last2=Kurth |first2=W. S. |last3=Cairns |first3=I. H. |last4=Granroth |first4=L. J. |issue=A12 }}</ref> These plasma wave detections were possibly triggered by lightning over 20 minutes in the ammonia clouds of the magnetosphere.<ref name="gurnett-1990" /> During ''Voyager 2''{{'}}s closest approach to Neptune, the PWS instrument provided Neptune’s first plasma wave detections at a sample rate of 28,800 samples per second.<ref name="gurnett-1990" /> The measured plasma densities range from 10^-3 – 10^-1 cm^-3.<ref name="gurnett-1990" /><ref>{{cite journal |last1=Belcher |first1=J.W. |last2=Bridge |first2=H.S. |last3=Bagenal |first3=F. |last4=Coppi |first4=B. |last5=Divers |first5=O. |last6=Eviatar |first6=A. |last7=Gordon |first7=G.S. |last8=Lazarus |first8=A.J. |last9=McNutt |first9=R.L. |last10=Ogilvie |first10= K.W. |last11=Richardson |first11= J.D. |last12= Siscoe |first12=G.L. |last13=Sittler |first13=E.C. |last14=Steinberg |first14=J.T. |last15=Sullivan |first15=J.D. |last16=Szabo |first16=A. |last17=Villanueva |first17=L. |last18=Vasyliunas |first18=V.M. |last19=Zhang |first19=M. |title= Plasma observations near Neptune: Initial results from Voyager 2 |journal=Science |date=1989 |volume=246 |issue=4936 |pages=1478–1483 |doi=10.1126/science.246.4936.1478 |pmid=17756003 |bibcode=1989Sci...246.1478B }}</ref> In 1989, the ''Voyager 2'' Planetary Radio Astronomy (PRA) experiment observed around 60 lightning flashes, or Neptunian electrostatic discharges emitting energies over 7×10{{sup|8}} J.<ref>{{cite journal |last1=Borucki |first1=W.J. |title=Predictions of lightning activity at Neptune |journal=Geophysical Research Letters |date=1989 |volume=16 |issue=8 |page=937-939 |doi=10.1029/gl016i008p00937|bibcode=1989GeoRL..16..937B }}</ref> A plasma wave system (PWS) detected 16 electromagnetic wave events with a frequency range of 50&nbsp;Hz – 12&nbsp;kHz at magnetic latitudes 7˚-33˚.<ref name="aplin-2020" /><ref name="gurnett-1990">{{cite journal |title=Whistlers in Neptune's magnetosphere: Evidence of atmospheric lightning |journal=Journal of Geophysical Research: Space Physics |date=1990 |volume=95 |page=20967-20976 |doi=10.1029/ja095ia12p20967|bibcode=1990JGR....9520967G |hdl=2060/19910002329 |hdl-access=free |last1=Gurnett |first1=D. A. |last2=Kurth |first2=W. S. |last3=Cairns |first3=I. H. |last4=Granroth |first4=L. J. |issue=A12 }}</ref> These plasma wave detections were possibly triggered by lightning over 20 minutes in the ammonia clouds of the magnetosphere.<ref name="gurnett-1990" /> During ''Voyager 2''{{'}}s closest approach to Neptune, the PWS instrument provided Neptune’s first plasma wave detections at a sample rate of 28,800 samples per second.<ref name="gurnett-1990" /> The measured plasma densities range from 10{{sup|–3}} – 10{{sup|–1}} cm{{sup|–3}}.<ref name="gurnett-1990" /><ref>{{cite journal |last1=Belcher |first1=J.W. |last2=Bridge |first2=H.S. |last3=Bagenal |first3=F. |last4=Coppi |first4=B. |last5=Divers |first5=O. |last6=Eviatar |first6=A. |last7=Gordon |first7=G.S. |last8=Lazarus |first8=A.J. |last9=McNutt |first9=R.L. |last10=Ogilvie |first10= K.W. |last11=Richardson |first11= J.D. |last12= Siscoe |first12=G.L. |last13=Sittler |first13=E.C. |last14=Steinberg |first14=J.T. |last15=Sullivan |first15=J.D. |last16=Szabo |first16=A. |last17=Villanueva |first17=L. |last18=Vasyliunas |first18=V.M. |last19=Zhang |first19=M. |title= Plasma observations near Neptune: Initial results from Voyager 2 |journal=Science |date=1989 |volume=246 |issue=4936 |pages=1478–1483 |doi=10.1126/science.246.4936.1478 |pmid=17756003 |bibcode=1989Sci...246.1478B }}</ref>


''Voyager 2'' discovered previously unknown ],<ref>] {{Webarchive|url=https://web.archive.org/web/20200410070225/https://solarsystem.nasa.gov/moons/neptune-moons/in-depth/ |date=April 10, 2020 }} NASA Science: Solar System Exploration. Updated December 6, 2017. Accessed December 12, 2018.</ref> and confirmed six new moons: ], ], ], ], ] and ].<ref name="elizabeth howell">Elizabeth Howell (2016) {{Webarchive|url=https://web.archive.org/web/20181215172111/https://www.space.com/22222-neptunes-moons.html |date=December 15, 2018 }} '']'', June 30, 2016. Accessed December 12, 2018.</ref>{{efn-ua|One of these moons, ], was first reported in 1981 from ground telescope observations, but not confirmed until the ''Voyager 2'' approach.<ref name="elizabeth howell" />}} While in the neighborhood of Neptune, ''Voyager 2'' discovered the "]", which has since disappeared, according to observations by the ].<ref>Phil Plait (2016) {{Webarchive|url=https://web.archive.org/web/20181215175353/https://slate.com/technology/2016/06/hubble-observation-reveals-a-new-dark-spot-on-neptune.html |date=December 15, 2018 }} '']'', June 24, 2016. Accessed December 12, 2018.</ref> The Great Dark Spot was later hypothesized to be a region of clear gas, forming a window in the planet's high-altitude methane cloud deck.<ref>] (1998) {{Webarchive|url=https://web.archive.org/web/20170611173537/https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA01286 |date=June 11, 2017 }} NASA Jet Propulsion Laboratory: California Institute of Technology, August 2, 1998. Accessed December 12, 2018.</ref> ''Voyager 2'' discovered previously unknown ],<ref>] {{Webarchive|url=https://web.archive.org/web/20200410070225/https://solarsystem.nasa.gov/moons/neptune-moons/in-depth/ |date=April 10, 2020 }} NASA Science: Solar System Exploration. Updated December 6, 2017. Accessed December 12, 2018.</ref> and confirmed six new moons: ], ], ], ], ] and ].<ref name="elizabeth howell">Elizabeth Howell (2016) {{Webarchive|url=https://web.archive.org/web/20181215172111/https://www.space.com/22222-neptunes-moons.html |date=December 15, 2018 }} '']'', June 30, 2016. Accessed December 12, 2018.</ref>{{efn-ua|One of these moons, ], was first reported in 1981 from ground telescope observations, but not confirmed until the ''Voyager 2'' approach.<ref name="elizabeth howell" />}} While in the neighborhood of Neptune, ''Voyager 2'' discovered the "]", which has since disappeared, according to observations by the ].<ref>Phil Plait (2016) {{Webarchive|url=https://web.archive.org/web/20181215175353/https://slate.com/technology/2016/06/hubble-observation-reveals-a-new-dark-spot-on-neptune.html |date=December 15, 2018 }} '']'', June 24, 2016. Accessed December 12, 2018.</ref> The Great Dark Spot was later hypothesized to be a region of clear gas, forming a window in the planet's high-altitude methane cloud deck.<ref>] (1998) {{Webarchive|url=https://web.archive.org/web/20170611173537/https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA01286 |date=June 11, 2017 }} NASA Jet Propulsion Laboratory: California Institute of Technology, August 2, 1998. Accessed December 12, 2018.</ref>
Line 623: Line 624:
]'', '']'', '']'', and ''Voyager 2'' spacecraft.]] ]'', '']'', '']'', and ''Voyager 2'' spacecraft.]]


In 1992, ''Voyager 2'' observed the nova ] in the far-ultraviolet, first of it's kind. The further increase in the brightness at those wavelengths helped in the more detailed study of the nova.<ref name="ulivi-2007" /><ref>{{Cite report |url=https://quantummechanics.ucsd.edu/ph87/ScientificAmerican/sciam_magnificant-cosmos/nova-of-century.pdf |title=V1974 Cygni 1992: The Most Important Nova of the Century |access-date=June 9, 2024 |archive-date=May 6, 2023 |archive-url=https://web.archive.org/web/20230506063436/https://quantummechanics.ucsd.edu/ph87/ScientificAmerican/sciam_magnificant-cosmos/nova-of-century.pdf |url-status=live }}</ref> In 1992, ''Voyager 2'' observed the nova ] in the far-ultraviolet, first of its kind. The further increase in the brightness at those wavelengths helped in the more detailed study of the nova.<ref name="ulivi-2007" /><ref>{{Cite report |url=https://quantummechanics.ucsd.edu/ph87/ScientificAmerican/sciam_magnificant-cosmos/nova-of-century.pdf |title=V1974 Cygni 1992: The Most Important Nova of the Century |access-date=June 9, 2024 |archive-date=May 6, 2023 |archive-url=https://web.archive.org/web/20230506063436/https://quantummechanics.ucsd.edu/ph87/ScientificAmerican/sciam_magnificant-cosmos/nova-of-century.pdf |url-status=live }}</ref>


In July 1994, an attempt was made to observe the impacts from fragments of the comet ] with Jupiter.<ref name="ulivi-2007" /> The craft's position meant it had a direct line of sight to the impacts and observations were made in the ultraviolet and radio spectrum.<ref name="ulivi-2007" /> ''Voyager 2'' failed to detect anything, with calculations showing that the fireballs were just below the craft's limit of detection.<ref name="ulivi-2007">{{cite book |last1=Ulivi |first1=Paolo |last2=Harland |first2=David M |date=2007 |title=Robotic Exploration of the Solar System Part I: The Golden Age 1957–1982 |publisher=Springer |page=449 |isbn=978-0-387-49326-8}}</ref> In July 1994, an attempt was made to observe the impacts from fragments of the comet ] with Jupiter.<ref name="ulivi-2007" /> The craft's position meant it had a direct line of sight to the impacts and observations were made in the ultraviolet and radio spectrum.<ref name="ulivi-2007" /> ''Voyager 2'' failed to detect anything, with calculations showing that the fireballs were just below the craft's limit of detection.<ref name="ulivi-2007">{{cite book |last1=Ulivi |first1=Paolo |last2=Harland |first2=David M |date=2007 |title=Robotic Exploration of the Solar System Part I: The Golden Age 1957–1982 |publisher=Springer |page=449 |isbn=978-0-387-49326-8}}</ref>
Line 640: Line 641:
On April 22, 2010, ''Voyager 2'' encountered scientific data format problems.<ref>{{cite news |url=https://www.boston.com/news/nation/articles/2010/05/06/nasa_working_on_voyager_2_data_problem/ |title=NASA working on Voyager 2 data problem |author=John Antczak |date=May 6, 2010 |agency=Associated Press |access-date=October 5, 2018 |archive-date=March 5, 2016 |archive-url=https://web.archive.org/web/20160305012426/http://www.boston.com/news/nation/articles/2010/05/06/nasa_working_on_voyager_2_data_problem/ |url-status=live }}</ref> On May 17, 2010, JPL engineers revealed that a flipped bit in an on-board computer had caused the problem, and scheduled a bit reset for May 19.<ref>{{cite web |url=https://www.jpl.nasa.gov/news/news.cfm?release=2010-151 |title=Engineers Diagnosing Voyager 2 Data System |publisher=] |access-date=May 17, 2010 |archive-date=June 12, 2010 |archive-url=https://web.archive.org/web/20100612222643/http://www.jpl.nasa.gov/news/news.cfm?release=2010-151 |url-status=dead }}</ref> On May 23, 2010, ''Voyager 2'' resumed sending science data from deep space after engineers fixed the flipped bit.<ref>{{cite web |url=http://www.space-travel.com/reports/NASA_Fixes_Bug_On_Voyager_2_999.html |title=NASA Fixes Bug On Voyager 2 |access-date=May 25, 2010 |archive-date=May 27, 2010 |archive-url=https://web.archive.org/web/20100527134927/http://www.space-travel.com/reports/NASA_Fixes_Bug_On_Voyager_2_999.html |url-status=live }}</ref> On April 22, 2010, ''Voyager 2'' encountered scientific data format problems.<ref>{{cite news |url=https://www.boston.com/news/nation/articles/2010/05/06/nasa_working_on_voyager_2_data_problem/ |title=NASA working on Voyager 2 data problem |author=John Antczak |date=May 6, 2010 |agency=Associated Press |access-date=October 5, 2018 |archive-date=March 5, 2016 |archive-url=https://web.archive.org/web/20160305012426/http://www.boston.com/news/nation/articles/2010/05/06/nasa_working_on_voyager_2_data_problem/ |url-status=live }}</ref> On May 17, 2010, JPL engineers revealed that a flipped bit in an on-board computer had caused the problem, and scheduled a bit reset for May 19.<ref>{{cite web |url=https://www.jpl.nasa.gov/news/news.cfm?release=2010-151 |title=Engineers Diagnosing Voyager 2 Data System |publisher=] |access-date=May 17, 2010 |archive-date=June 12, 2010 |archive-url=https://web.archive.org/web/20100612222643/http://www.jpl.nasa.gov/news/news.cfm?release=2010-151 |url-status=dead }}</ref> On May 23, 2010, ''Voyager 2'' resumed sending science data from deep space after engineers fixed the flipped bit.<ref>{{cite web |url=http://www.space-travel.com/reports/NASA_Fixes_Bug_On_Voyager_2_999.html |title=NASA Fixes Bug On Voyager 2 |access-date=May 25, 2010 |archive-date=May 27, 2010 |archive-url=https://web.archive.org/web/20100527134927/http://www.space-travel.com/reports/NASA_Fixes_Bug_On_Voyager_2_999.html |url-status=live }}</ref>


In 2013, it was originally thought that ''Voyager 2'' would enter interstellar space in two to three years, with its plasma spectrometer providing the first direct measurements of the density and temperature of the interstellar plasma. But the Voyager project scientist, ] and his colleagues said they lacked evidence of what would be the key signature of interstellar space: a shift in the direction of the magnetic field.<ref>{{cite news |url=https://www.sciencenews.org/view/generic/id/353199/description/At_last_Voyager_1_slips_into_interstellar_space |title=At last, Voyager 1 slips into interstellar space – Atom & Cosmos |work=Science News |date=September 12, 2013 |access-date=September 17, 2013 |archive-url=https://web.archive.org/web/20130915214546/http://www.sciencenews.org/view/generic/id/353199/description/At_last_Voyager_1_slips_into_interstellar_space |archive-date=September 15, 2013 |url-status=dead}}</ref> Finally, in December 2018, Stone announced that ''Voyager 2'' reached interstellar space on November 5, 2018.<ref name="gill-2018" /><ref name="brown-2018" /> In 2013, it was originally thought that ''Voyager 2'' would enter interstellar space in two to three years, with its plasma spectrometer providing the first direct measurements of the density and temperature of the interstellar plasma. But the Voyager project scientist, ] and his colleagues said they lacked evidence of what would be the key signature of interstellar space: a shift in the direction of the magnetic field.<ref name=":353199"/> Finally, in December 2018, Stone announced that ''Voyager 2'' reached interstellar space on November 5, 2018.<ref name="gill-2018" /><ref name="brown-2018" />


]: Earth is one astronomical unit (AU) from the Sun; Saturn is at 10 AU, and the heliopause is at around 120 AU. Neptune is 30.1 AU from the Sun; thus the edge of interstellar space is around four times as far from the Sun as the last planet.<ref name="brown-2018" />]] ]: Earth is one astronomical unit (AU) from the Sun; Saturn is at 10 AU, and the heliopause is at around 120 AU. Neptune is 30.1 AU from the Sun; thus the edge of interstellar space is around four times as far from the Sun as the last planet.<ref name="brown-2018" />]]
Line 648: Line 649:
In October 2020, astronomers reported a significant unexpected increase in density in the ] beyond the ] as detected by the ''Voyager 1'' and ''Voyager 2''; this implies that "the density gradient is a large-scale feature of the ] (very local ]) in the general direction of the ]".<ref>{{cite news |last=Starr |first=Michelle |title=Voyager Spacecraft Detect an Increase in The Density of Space Outside The Solar System |url=https://www.sciencealert.com/for-some-reason-the-density-of-space-is-higher-just-outside-the-solar-system |date=October 19, 2020 |work=] |access-date=October 19, 2020 |archive-date=October 19, 2020 |archive-url=https://web.archive.org/web/20201019133221/https://www.sciencealert.com/for-some-reason-the-density-of-space-is-higher-just-outside-the-solar-system |url-status=live }}</ref><ref>{{cite journal |last1=Kurth |first1=W.S. |last2=Gurnett |first2=D.A. |title=Observations of a Radial Density Gradient in the Very Local Interstellar Medium by Voyager 2 |date=August 25, 2020 |journal=] |volume=900 |number=1 |pages=L1 |doi=10.3847/2041-8213/abae58 |bibcode=2020ApJ...900L...1K |s2cid=225312823 |doi-access=free }}</ref> In October 2020, astronomers reported a significant unexpected increase in density in the ] beyond the ] as detected by the ''Voyager 1'' and ''Voyager 2''; this implies that "the density gradient is a large-scale feature of the ] (very local ]) in the general direction of the ]".<ref>{{cite news |last=Starr |first=Michelle |title=Voyager Spacecraft Detect an Increase in The Density of Space Outside The Solar System |url=https://www.sciencealert.com/for-some-reason-the-density-of-space-is-higher-just-outside-the-solar-system |date=October 19, 2020 |work=] |access-date=October 19, 2020 |archive-date=October 19, 2020 |archive-url=https://web.archive.org/web/20201019133221/https://www.sciencealert.com/for-some-reason-the-density-of-space-is-higher-just-outside-the-solar-system |url-status=live }}</ref><ref>{{cite journal |last1=Kurth |first1=W.S. |last2=Gurnett |first2=D.A. |title=Observations of a Radial Density Gradient in the Very Local Interstellar Medium by Voyager 2 |date=August 25, 2020 |journal=] |volume=900 |number=1 |pages=L1 |doi=10.3847/2041-8213/abae58 |bibcode=2020ApJ...900L...1K |s2cid=225312823 |doi-access=free }}</ref>


On July 18, 2023, Voyager 2 overtook '']'' as the second farthest spacecraft from the Sun.<ref name="sun-v2"/><ref name="sun-p10"/>
On July 18, 2023, Voyager 2 overtook '']'' as the second farthest spacecraft from the Sun.<ref>{{Cite web |title=Distance between the Sun and Voyager 2 |url=https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Sun%27&START_TIME=%272023-07-01%27&STOP_TIME=%272023-08-01%27&STEP_SIZE=%271%20day%27&QUANTITIES=%2720%27&CENTER=%27500@-32%27 |access-date=July 18, 2023 |archive-date=July 9, 2023 |archive-url=https://web.archive.org/web/20230709162418/https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Sun%27&START_TIME=%272023-07-01%27&STOP_TIME=%272023-08-01%27&STEP_SIZE=%271%20day%27&QUANTITIES=%2720%27&CENTER=%27500%40-32%27 |url-status=live }}</ref><ref>{{Cite web |title=Distance between the Sun and Pioneer 10 |url=https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Sun%27&START_TIME=%272023-07-01%27&STOP_TIME=%272023-08-01%27&STEP_SIZE=%271%20day%27&QUANTITIES=%2720%27&CENTER=%27500@-23%27 |access-date=July 18, 2023 |archive-date=July 14, 2023 |archive-url=https://web.archive.org/web/20230714212211/https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%27Sun%27&START_TIME=%272023-07-01%27&STOP_TIME=%272023-08-01%27&STEP_SIZE=%271%20day%27&QUANTITIES=%2720%27&CENTER=%27500%40-23%27 |url-status=live }}</ref>


On July 21, 2023, a programming error misaligned ''Voyager 2''<nowiki/>'s high gain antenna<ref>{{Cite web |last=Inskeep |first=Steve |date=August 2, 2023 |title=NASA loses contact with Voyager Two after a programming error on Earth |url=https://www.npr.org/2023/08/02/1191519686/nasa-loses-contact-with-voyager-two-after-a-programming-error-on-earth |archive-date=August 2, 2023 |access-date=January 15, 2023 |website=NPR |archive-url=https://web.archive.org/web/20230802093328/https://www.npr.org/2023/08/02/1191519686/nasa-loses-contact-with-voyager-two-after-a-programming-error-on-earth |url-status=live }}</ref> 2 degrees away from Earth, breaking communications with the spacecraft. By August 1, the spacecraft's carrier signal was detected using multiple antennas of the ].<ref>{{Cite news |date=August 1, 2023 |title=Voyager 2: Nasa picks up 'heartbeat' signal after sending wrong command |language=en-GB |work=BBC News |url=https://www.bbc.com/news/world-66371569 |access-date=August 2, 2023 |archive-date=August 2, 2023 |archive-url=https://web.archive.org/web/20230802095458/https://www.bbc.com/news/world-66371569 |url-status=live }}</ref><ref name="blogsnasagov-2023">{{Cite web |date=July 28, 2023 |title=Mission Update: Voyager 2 Communications Pause – The Sun Spot |url=https://blogs.nasa.gov/sunspot/2023/07/28/mission-update-voyager-2-communications-pause/ |access-date=July 29, 2023 |website=blogs.nasa.gov |language=en-US |archive-date=July 29, 2023 |archive-url=https://web.archive.org/web/20230729144934/https://blogs.nasa.gov/sunspot/2023/07/28/mission-update-voyager-2-communications-pause/ |url-status=live }}</ref> A high-power "shout" on August 4 sent from the ]<ref>{{cite news|author=Ellen Francis|date=August 5, 2023|title='Interstellar shout' restores NASA contact with lost Voyager 2 spacecraft|url=https://www.washingtonpost.com/technology/2023/08/05/nasa-voyager2-contact-interstellar-shout/|newspaper=]|access-date=August 5, 2023|archive-date=August 5, 2023|archive-url=https://web.archive.org/web/20230805134746/https://www.washingtonpost.com/technology/2023/08/05/nasa-voyager2-contact-interstellar-shout/|url-status=live}}</ref> successfully commanded the spacecraft to reorient towards Earth, resuming communications.<ref name="blogsnasagov-2023" /><ref>{{Cite news |date=August 4, 2023 |title=Voyager 2: Nasa fully back in contact with lost space probe |language=en-GB |work=BBC News |url=https://www.bbc.com/news/science-environment-66408851 |access-date=August 4, 2023 |archive-date=August 4, 2023 |archive-url=https://web.archive.org/web/20230804215149/https://www.bbc.com/news/science-environment-66408851 |url-status=live }}</ref> As a failsafe measure, the probe is also programmed to autonomously reset its orientation to point towards Earth, which would have occurred by October 15.<ref name="blogsnasagov-2023" /> On July 21, 2023, a programming error misaligned ''Voyager 2''<nowiki/>'s high gain antenna<ref>{{Cite web |last=Inskeep |first=Steve |date=August 2, 2023 |title=NASA loses contact with Voyager Two after a programming error on Earth |url=https://www.npr.org/2023/08/02/1191519686/nasa-loses-contact-with-voyager-two-after-a-programming-error-on-earth |archive-date=August 2, 2023 |access-date=January 15, 2023 |website=NPR |archive-url=https://web.archive.org/web/20230802093328/https://www.npr.org/2023/08/02/1191519686/nasa-loses-contact-with-voyager-two-after-a-programming-error-on-earth |url-status=live }}</ref> 2 degrees away from Earth, breaking communications with the spacecraft. By August 1, the spacecraft's carrier signal was detected using multiple antennas of the ].<ref>{{Cite news |date=August 1, 2023 |title=Voyager 2: Nasa picks up 'heartbeat' signal after sending wrong command |language=en-GB |work=BBC News |url=https://www.bbc.com/news/world-66371569 |access-date=August 2, 2023 |archive-date=August 2, 2023 |archive-url=https://web.archive.org/web/20230802095458/https://www.bbc.com/news/world-66371569 |url-status=live }}</ref><ref name="blogsnasagov-2023">{{Cite web |date=July 28, 2023 |title=Mission Update: Voyager 2 Communications Pause – The Sun Spot |url=https://blogs.nasa.gov/sunspot/2023/07/28/mission-update-voyager-2-communications-pause/ |access-date=July 29, 2023 |website=blogs.nasa.gov |language=en-US |archive-date=July 29, 2023 |archive-url=https://web.archive.org/web/20230729144934/https://blogs.nasa.gov/sunspot/2023/07/28/mission-update-voyager-2-communications-pause/ |url-status=live }}</ref> A high-power "shout" on August 4 sent from the ]<ref>{{cite news|author=Ellen Francis|date=August 5, 2023|title='Interstellar shout' restores NASA contact with lost Voyager 2 spacecraft|url=https://www.washingtonpost.com/technology/2023/08/05/nasa-voyager2-contact-interstellar-shout/|newspaper=]|access-date=August 5, 2023|archive-date=August 5, 2023|archive-url=https://web.archive.org/web/20230805134746/https://www.washingtonpost.com/technology/2023/08/05/nasa-voyager2-contact-interstellar-shout/|url-status=live}}</ref> successfully commanded the spacecraft to reorient towards Earth, resuming communications.<ref name="blogsnasagov-2023" /><ref>{{Cite news |date=August 4, 2023 |title=Voyager 2: Nasa fully back in contact with lost space probe |language=en-GB |work=BBC News |url=https://www.bbc.com/news/science-environment-66408851 |access-date=August 4, 2023 |archive-date=August 4, 2023 |archive-url=https://web.archive.org/web/20230804215149/https://www.bbc.com/news/science-environment-66408851 |url-status=live }}</ref> As a failsafe measure, the probe is also programmed to autonomously reset its orientation to point towards Earth, which would have occurred by October 15.<ref name="blogsnasagov-2023" />
Line 657: Line 658:
{| class="wikitable" {| class="wikitable"
|- |-
! Year || End of specific capabilities as a result of the available electrical power limitations<ref>{{cite web |url=https://voyager.jpl.nasa.gov/spacecraft/spacecraftlife.html |title=Voyager – The Spacecraft |website=voyager.jpl.nasa.gov |access-date=October 5, 2018 |archive-date=March 1, 2017 |archive-url=https://web.archive.org/web/20170301102317/http://voyager.jpl.nasa.gov/spacecraft/spacecraftlife.html |url-status=live }}</ref> ! Year || End of specific capabilities as a result of the available electrical power limitations<ref name="spacecraft lifetime"/>
|- |-
| 1998 || Termination of scan platform and UVS observations<ref name="voyagerjplnasagov" /> | 1998 || Termination of scan platform and UVS observations<ref name="voyagerjplnasagov" />
|- |-
| 2007 || Termination of ''Digital Tape Recorder'' (DTR) operations (It was no longer needed due to a failure on the ''High Waveform Receiver'' on the ''Plasma Wave Subsystem'' (PWS) on June 30, 2002.)<ref>{{cite web |url=https://voyager.jpl.nasa.gov/spacecraft/spacecraftlife.html |title=Voyager – Interstellar Science |access-date=December 2, 2009 |date=December 1, 2009 |publisher=] ] |archive-date=March 1, 2017 |archive-url=https://web.archive.org/web/20170301102317/http://voyager.jpl.nasa.gov/spacecraft/spacecraftlife.html |url-status=live }}</ref> | 2007 || Termination of ''Digital Tape Recorder'' (DTR) operations (It was no longer needed due to a failure on the ''High Waveform Receiver'' on the ''Plasma Wave Subsystem'' (PWS) on June 30, 2002.)<ref name="spacecraft lifetime"/>
|- |-
| 2008 || Power off ''Planetary Radio Astronomy Experiment'' (PRA)<ref name="voyagerjplnasagov" /> | 2008 || Power off ''Planetary Radio Astronomy Experiment'' (PRA)<ref name="voyagerjplnasagov" />
Line 669: Line 670:
| 2021 || Turn off heater for Low Energy Charged Particle instrument<ref>{{cite news|url=https://www.nytimes.com/2021/02/12/science/nasa-voyager-deep-space-network.html|title=Earth to Voyager 2: After a Year in the Darkness, We Can Talk to You Again|newspaper=The New York Times|date=February 12, 2021|access-date=February 12, 2021|last1=Stirone|first1=Shannon|archive-date=February 12, 2021|archive-url=https://web.archive.org/web/20210212100818/https://www.nytimes.com/2021/02/12/science/nasa-voyager-deep-space-network.html|url-status=live}}</ref> | 2021 || Turn off heater for Low Energy Charged Particle instrument<ref>{{cite news|url=https://www.nytimes.com/2021/02/12/science/nasa-voyager-deep-space-network.html|title=Earth to Voyager 2: After a Year in the Darkness, We Can Talk to You Again|newspaper=The New York Times|date=February 12, 2021|access-date=February 12, 2021|last1=Stirone|first1=Shannon|archive-date=February 12, 2021|archive-url=https://web.archive.org/web/20210212100818/https://www.nytimes.com/2021/02/12/science/nasa-voyager-deep-space-network.html|url-status=live}}</ref>
|- |-
| 2023 || Software update reroutes power from the voltage regulator to keep the science instruments operating<ref>{{Cite web|url=https://www.jpl.nasa.gov/news/nasas-voyager-will-do-more-science-with-new-power-strategy|title=NASA's Voyager Will Do More Science With New Power Strategy|website=NASA/JPL|access-date=May 1, 2023|archive-date=April 30, 2023|archive-url=https://web.archive.org/web/20230430184553/https://www.jpl.nasa.gov/news/nasas-voyager-will-do-more-science-with-new-power-strategy|url-status=live}}</ref> | 2023 || Software update reroutes power from the voltage regulator to keep the science instruments operating<ref name="newpower"/>
|- |-
| 2024 || Plasma Science instrument (PLS) turned off<ref>{{cite web |title=NASA Turns Off Science Instrument to Save Voyager 2 Power|website=] |url=https://www.jpl.nasa.gov/news/nasa-turns-off-science-instrument-to-save-voyager-2-power/|date=1 October 2024}}</ref>
| 2030 approx || Can no longer power any instrument<ref>{{Cite journal|url=https://www.scientificamerican.com/article/record-breaking-voyager-spacecraft-begin-to-power-down/|title=Record-Breaking Voyager Spacecraft Begin to Power Down|website=Scientific American|date=July 2022|doi=10.1038/scientificamerican0722-26|access-date=August 14, 2023|archive-date=June 23, 2022|archive-url=https://web.archive.org/web/20220623222423/https://www.scientificamerican.com/article/record-breaking-voyager-spacecraft-begin-to-power-down/|url-status=live}}</ref>
|-
| 2030 approx || Can no longer power any instrument<ref>{{Cite journal|url=https://www.scientificamerican.com/article/record-breaking-voyager-spacecraft-begin-to-power-down/|title=Record-Breaking Voyager Spacecraft Begin to Power Down|journal=Scientific American|date=July 2022|doi=10.1038/scientificamerican0722-26|pmid=39016957 |access-date=August 14, 2023|archive-date=June 23, 2022|archive-url=https://web.archive.org/web/20220623222423/https://www.scientificamerican.com/article/record-breaking-voyager-spacecraft-begin-to-power-down/|url-status=live |last1=Folger |first1=T. |volume=327 |issue=1 |page=26 }}</ref>
|- |-
| 2036 || Out of range of the Deep Space Network<ref name="jet propulsion laboratory">{{Cite web|title=Voyager – Frequently Asked Questions|url=https://voyager.jpl.nasa.gov/frequently-asked-questions/|website=Jet Propulsion Laboratory|access-date=December 11, 2018|archive-date=August 13, 2023|archive-url=https://web.archive.org/web/20230813133216/https://voyager.jpl.nasa.gov/frequently-asked-questions/|url-status=live}}</ref> | 2036 || Out of range of the Deep Space Network<ref name="jet propulsion laboratory">{{Cite web|title=Voyager – Frequently Asked Questions|url=https://voyager.jpl.nasa.gov/frequently-asked-questions/|website=Jet Propulsion Laboratory|access-date=December 11, 2018|archive-date=August 13, 2023|archive-url=https://web.archive.org/web/20230813133216/https://voyager.jpl.nasa.gov/frequently-asked-questions/|url-status=live}}</ref>
Line 680: Line 683:


== Future of the probe == == Future of the probe ==
The probe is expected to keep transmitting weak radio messages until at least the mid-2020s, more than 48 years after it was launched.<ref>{{cite web |url=https://voyager.jpl.nasa.gov/spacecraft/spacecraftlife.html |title=Voyager – Spacecraft – Spacecraft Lifetime |access-date=May 25, 2008 |date=March 15, 2008 |publisher=] ] |archive-date=March 1, 2017 |archive-url=https://web.archive.org/web/20170301102317/http://voyager.jpl.nasa.gov/spacecraft/spacecraftlife.html |url-status=live }}</ref> NASA says that "The Voyagers are destined—perhaps eternally—to wander the Milky Way."<ref>{{Cite web |title=Future |url=https://voyager.jpl.nasa.gov/mission/interstellar.html |url-status=live |archive-url=https://web.archive.org/web/20120514175011/http://voyager.jpl.nasa.gov/mission/interstellar.html |archive-date=May 14, 2012 |access-date=October 13, 2013 |publisher=NASA}}</ref> The probe is expected to keep transmitting weak radio messages until at least the mid-2020s, more than 48 years after it was launched.<ref name="spacecraft lifetime">{{cite web |url=https://voyager.jpl.nasa.gov/spacecraft/spacecraftlife.html |title=Voyager – Spacecraft – Spacecraft Lifetime |access-date=May 25, 2008 |date=March 15, 2008 |publisher=] ] |archive-date=March 1, 2017 |archive-url=https://web.archive.org/web/20170301102317/http://voyager.jpl.nasa.gov/spacecraft/spacecraftlife.html |url-status=live }}</ref> NASA says that "The Voyagers are destined—perhaps eternally—to wander the Milky Way."<ref>{{Cite web |title=Future |url=https://voyager.jpl.nasa.gov/mission/interstellar.html |url-status=live |archive-url=https://web.archive.org/web/20120514175011/http://voyager.jpl.nasa.gov/mission/interstellar.html |archive-date=May 14, 2012 |access-date=October 13, 2013 |publisher=NASA}}</ref>


''Voyager 2'' is not headed toward any particular star, although in roughly 42,000 years, it will pass the star ] at a distance of 1.7 light-years.<ref>{{cite web |date=June 22, 2007 |url=https://voyager.jpl.nasa.gov/mission/interstellar.html |title=Voyager – Mission – Interstellar Mission |publisher=NASA |access-date=August 14, 2013 |archive-date=May 14, 2012 |archive-url=https://web.archive.org/web/20120514175011/http://voyager.jpl.nasa.gov/mission/interstellar.html |url-status=live }}</ref><ref>{{cite journal |title=Future stellar flybys of the Voyager and Pioneer spacecraft |journal=Research Notes of the AAS |volume=3 |issue=4 |pages=59 |date=April 3, 2019 |doi=10.3847/2515-5172/ab158e |last1=Bailer-Jones |first1=Coryn A. L. |last2=Farnocchia |first2=Davide |bibcode=2019RNAAS...3...59B|arxiv=1912.03503 |s2cid=134524048 |doi-access=free }}</ref> If undisturbed for ], ''Voyager 2'' should pass by the star ] at a distance of 4.3 light-years.<ref>{{cite news |last1=Baldwin |first1=Paul |title=NASA's Voyager 2 heads for star Sirius... by time it arrives humans will have died out |url=https://www.express.co.uk/news/world/567957/NASA-s-Voyager-2-sets-course-for-star-Sirius-by-time-it-arrives-human-race-will-be-dead |access-date=September 1, 2022 |work=Express.co.uk |date=December 4, 2017 |language=en |archive-date=September 1, 2022 |archive-url=https://web.archive.org/web/20220901052903/https://www.express.co.uk/news/world/567957/NASA-s-Voyager-2-sets-course-for-star-Sirius-by-time-it-arrives-human-race-will-be-dead |url-status=live }}</ref> ''Voyager 2'' is not headed toward any particular star. The nearest star is 4.2 light-years away, and at 15.341 km/s, the spacecraft travels one light-year in about 19,541 years - during which time the nearby stars will also move substantially. In roughly 42,000 years, Voyager 2 will pass the star ] (10.30 light-years away from Earth) at a distance of 1.7 light-years.<ref>{{cite journal |title=Future stellar flybys of the Voyager and Pioneer spacecraft |journal=Research Notes of the AAS |volume=3 |issue=4 |pages=59 |date=April 3, 2019 |doi=10.3847/2515-5172/ab158e |last1=Bailer-Jones |first1=Coryn A. L. |last2=Farnocchia |first2=Davide |bibcode=2019RNAAS...3...59B|arxiv=1912.03503 |s2cid=134524048 |doi-access=free }}</ref> If undisturbed for ], ''Voyager 2'' should pass by the star ] (8.6 light-years from Earth) at a distance of 4.3 light-years.<ref>{{cite news |last1=Baldwin |first1=Paul |title=NASA's Voyager 2 heads for star Sirius... by time it arrives humans will have died out |url=https://www.express.co.uk/news/world/567957/NASA-s-Voyager-2-sets-course-for-star-Sirius-by-time-it-arrives-human-race-will-be-dead |access-date=September 1, 2022 |work=Express.co.uk |date=December 4, 2017 |language=en |archive-date=September 1, 2022 |archive-url=https://web.archive.org/web/20220901052903/https://www.express.co.uk/news/world/567957/NASA-s-Voyager-2-sets-course-for-star-Sirius-by-time-it-arrives-human-race-will-be-dead |url-status=live }}</ref>


== Golden record == == Golden record ==

Latest revision as of 11:49, 16 January 2025

NASA space probe launched in 1977

Voyager 2
Artist's rendering of the Voyager spacecraft, a small-bodied spacecraft with a large, central dish and multiple arms and antennas extending from the dishArtist's rendering of the Voyager spacecraft design
Mission typePlanetary exploration
OperatorNASA / JPL
COSPAR ID1977-076A
SATCAT no.10271
Websitevoyager.jpl.nasa.gov
Mission duration
  • 47 years, 4 months, 26 days elapsed
  • Planetary mission: 12 years, 1 month, 12 days
  • Interstellar mission: 35 years, 3 months, 14 days elapsed
Spacecraft properties
ManufacturerJet Propulsion Laboratory
Launch mass721.9 kilograms (1,592 lb)
Power470 watts (at launch)
Start of mission
Launch dateAugust 20, 1977, 14:29:00 (1977-08-20UTC14:29Z) UTC
RocketTitan IIIE
Launch siteCape Canaveral LC-41
Flyby of Jupiter
Closest approachJuly 9, 1979
Distance570,000 kilometers (350,000 mi)
Flyby of Saturn
Closest approachAugust 26, 1981
Distance101,000 km (63,000 mi)
Flyby of Uranus
Closest approachJanuary 24, 1986
Distance81,500 km (50,600 mi)
Flyby of Neptune
Closest approachAugust 25, 1989
Distance4,951 km (3,076 mi)
Large Strategic Science Missions
Planetary Science Division← Viking 2Voyager 1 → Voyager program
Heliocentric positions of the five interstellar probes (squares) and other bodies (circles) until 2020, with launch and flyby dates. Markers denote positions on 1 January of each year, with every fifth year labelled.
Plot 1 is viewed from the north ecliptic pole, to scale.
Plots 2 to 4 are third-angle projections at 20% scale.
In the SVG file, hover over a trajectory or orbit to highlight it and its associated launches and flybys.

Voyager 2 is a space probe launched by NASA on August 20, 1977, as a part of the Voyager program. It was launched on a trajectory towards the gas giants Jupiter and Saturn and enabled further encounters with the ice giants Uranus and Neptune. It remains the only spacecraft to have visited either of the ice giant planets, and was the third of five spacecraft to achieve Solar escape velocity, which allowed it to leave the Solar System. Launched 16 days before its twin Voyager 1, the primary mission of the spacecraft was to study the outer planets and its extended mission is to study interstellar space beyond the Sun's heliosphere.

Voyager 2 successfully fulfilled its primary mission of visiting the Jovian system in 1979, the Saturnian system in 1981, Uranian system in 1986, and the Neptunian system in 1989. The spacecraft is now in its extended mission of studying the interstellar medium. It is at a distance of 138.27 AU (20.7 billion km; 12.9 billion mi) from Earth as of November 2024.

The probe entered the interstellar medium on November 5, 2018, at a distance of 119.7 AU (11.1 billion mi; 17.9 billion km) from the Sun and moving at a velocity of 15.341 km/s (34,320 mph) relative to the Sun. Voyager 2 has left the Sun's heliosphere and is traveling through the interstellar medium, though still inside the Solar System, joining Voyager 1, which had reached the interstellar medium in 2012. Voyager 2 has begun to provide the first direct measurements of the density and temperature of the interstellar plasma.

Voyager 2 remains in contact with Earth through the NASA Deep Space Network. Communications are the responsibility of Australia's DSS 43 communication antenna, located near Canberra.

History

Further information: Grand Tour program

Background

Main article: Mariner Jupiter-Saturn

In the early space age, it was realized that a periodic alignment of the outer planets would occur in the late 1970s and enable a single probe to visit Jupiter, Saturn, Uranus, and Neptune by taking advantage of the then-new technique of gravity assists. NASA began work on a Grand Tour, which evolved into a massive project involving two groups of two probes each, with one group visiting Jupiter, Saturn, and Pluto and the other Jupiter, Uranus, and Neptune. The spacecraft would be designed with redundant systems to ensure survival throughout the entire tour. By 1972 the mission was scaled back and replaced with two Mariner program-derived spacecraft, the Mariner Jupiter-Saturn probes. To keep apparent lifetime program costs low, the mission would include only flybys of Jupiter and Saturn, but keep the Grand Tour option open. As the program progressed, the name was changed to Voyager.

The primary mission of Voyager 1 was to explore Jupiter, Saturn, and Saturn's largest moon, Titan. Voyager 2 was also to explore Jupiter and Saturn, but on a trajectory that would have the option of continuing on to Uranus and Neptune, or being redirected to Titan as a backup for Voyager 1. Upon successful completion of Voyager 1's objectives, Voyager 2 would get a mission extension to send the probe on towards Uranus and Neptune. Titan was selected due to the interest developed after the images taken by Pioneer 11 in 1979, which had indicated the atmosphere of the moon was substantial and complex. Hence the trajectory was designed for optimum Titan flyby.

Spacecraft design

Constructed by the Jet Propulsion Laboratory (JPL), Voyager 2 included 16 hydrazine thrusters, three-axis stabilization, gyroscopes and celestial referencing instruments (Sun sensor/Canopus Star Tracker) to maintain pointing of the high-gain antenna toward Earth. Collectively these instruments are part of the Attitude and Articulation Control Subsystem (AACS) along with redundant units of most instruments and 8 backup thrusters. The spacecraft also included 11 scientific instruments to study celestial objects as it traveled through space.

Communications

Built with the intent for eventual interstellar travel, Voyager 2 included a large, 3.7 m (12 ft) parabolic, high-gain antenna (see diagram) to transceive data via the Deep Space Network on Earth. Communications are conducted over the S-band (about 13 cm wavelength) and X-band (about 3.6 cm wavelength) providing data rates as high as 115.2 kilobits per second at the distance of Jupiter, and then ever-decreasing as distance increases, because of the inverse-square law. When the spacecraft is unable to communicate with Earth, the Digital Tape Recorder (DTR) can record about 64 megabytes of data for transmission at another time.

Power

Voyager RTG unit

Voyager 2 is equipped with three multihundred-watt radioisotope thermoelectric generators (MHW RTGs). Each RTG includes 24 pressed plutonium oxide spheres. At launch, each RTG provided enough heat to generate approximately 157 W of electrical power. Collectively, the RTGs supplied the spacecraft with 470 watts at launch (halving every 87.7 years). They were predicted to allow operations to continue until at least 2020, and continued to provide power to five scientific instruments through the early part of 2023. In April 2023 JPL began using a reservoir of backup power intended for an onboard safety mechanism. As a result, all five instruments had been expected to continue operation through 2026. In October 2024 NASA announced that the plasma science instrument had been turned off, preserving power for the remaining four instruments.

Attitude control and propulsion

Because of the energy required to achieve a Jupiter trajectory boost with an 825-kilogram (1,819 lb) payload, the spacecraft included a propulsion module made of a 1,123-kilogram (2,476 lb) solid-rocket motor and eight hydrazine monopropellant rocket engines, four providing pitch and yaw attitude control, and four for roll control. The propulsion module was jettisoned shortly after the successful Jupiter burn.

Sixteen hydrazine Aerojet MR-103 thrusters on the mission module provide attitude control. Four are used to execute trajectory correction maneuvers; the others in two redundant six-thruster branches, to stabilize the spacecraft on its three axes. Only one branch of attitude control thrusters is needed at any time.

Thrusters are supplied by a single 70-centimeter (28 in) diameter spherical titanium tank. It contained 100 kilograms (220 lb) of hydrazine at launch, providing enough fuel until 2034.

Scientific instruments

Main article: Voyager program
Instrument name Abr. Description
Imaging Science System
(disabled)
(ISS) Utilized a two-camera system (narrow-angle/wide-angle) to provide imagery of the outer planets and other objects along the trajectory.
Filters
Narrow Angle Camera Filters
Name Wavelength Spectrum Sensitivity
Clear 280 – 640 nm;
460 nm center
UV 280 – 370 nm;
325 nm center
Violet 350 – 450 nm;
400 nm center
Blue 430 – 530 nm;
480 nm center
' '
'
Green 530 – 640 nm;
585 nm center
' '
'
Orange 590 – 640 nm;
615 nm center
' '
'
Wide Angle Camera Filters
Name Wavelength Spectrum Sensitivity
Clear 280 – 640 nm;
460 nm center
' '
'
Violet 350 – 450 nm;
400 nm center
Blue 430 – 530 nm;
480 nm center
CH4-U 536 – 546 nm;
514 nm center
Green 530 – 640 nm;
585 nm center
Na-D 588 – 590 nm;
589 nm center
Orange 590 – 640 nm;
615 nm center
CH4-JST 614 – 624 nm;
619 nm center
Radio Science System
(disabled)
(RSS) Utilized the telecommunications system of the Voyager spacecraft to determine the physical properties of planets and satellites (ionospheres, atmospheres, masses, gravity fields, densities) and the amount and size distribution of material in Saturn's rings and the ring dimensions.
Infrared interferometer spectrometer and radiometer
(disabled)
(IRIS) Investigates both global and local energy balance and atmospheric composition. Vertical temperature profiles are also obtained from the planets and satellites as well as the composition, thermal properties, and size of particles in Saturn's rings.
Ultraviolet Spectrometer
(disabled)
(UVS) Designed to measure atmospheric properties, and to measure radiation.
Triaxial Fluxgate Magnetometer
(active)
(MAG) Designed to investigate the magnetic fields of Jupiter and Saturn, the solar-wind interaction with the magnetospheres of these planets, and the interplanetary magnetic field out to the solar wind boundary with the interstellar magnetic field and beyond, if crossed.
Plasma Spectrometer
(disabled)
(PLS) Investigates the macroscopic properties of the plasma ions and measures electrons in the energy range from 5 eV to 1 keV.
Low Energy Charged Particle Instrument
(active)
(LECP) Measures the differential in energy fluxes and angular distributions of ions, electrons and the differential in energy ion composition.
Cosmic Ray System
(active)
(CRS) Determines the origin and acceleration process, life history, and dynamic contribution of interstellar cosmic rays, the nucleosynthesis of elements in cosmic-ray sources, the behavior of cosmic rays in the interplanetary medium, and the trapped planetary energetic-particle environment.
Planetary Radio Astronomy Investigation
(disabled)
(PRA) Utilizes a sweep-frequency radio receiver to study the radio-emission signals from Jupiter and Saturn.
Photopolarimeter System
(defective)
(PPS) Utilized a telescope with a polarizer to gather information on surface texture and composition of Jupiter and Saturn and information on atmospheric scattering properties and density for both planets.
Plasma Wave Subsystem
(active)
(PWS) Provides continuous, sheath-independent measurements of the electron-density profiles at Jupiter and Saturn as well as basic information on local wave-particle interaction, useful in studying the magnetospheres.
Images of the spacecraft
  • Voyager in transport to a solar thermal test chamber. Voyager in transport to a solar thermal test chamber.
  • Voyager in transport to a solar thermal test chamber Voyager 2 awaiting payload entry into a Titan IIIE/Centaur rocket.
Media related to the Voyager spacecraft at Wikimedia Commons

Mission profile

Images of trajectory

Voyager 2's trajectory from the Earth, following the ecliptic through 1989 at Neptune and now heading south into the constellation Pavo

Path viewed from above the Solar System

Path viewed from side, showing distance below ecliptic in gray
Timeline of travel
Date Event
1977-08-20 Spacecraft launched at 14:29:00 UTC.
1977-12-10 Entered asteroid belt.
1977-12-19 Voyager 1 overtakes Voyager 2. (see diagram)
1978-06 Primary radio receiver fails. The remainder of the mission flown using backup.
1978-10-21 Exited asteroid belt
1979-04-25 Start Jupiter observation phase
Time Event
1979-07-08 Encounter with Jovian system.
0012:21 Callisto flyby at 214,930 km.
1979-07-09
0007:14 Ganymede flyby at 62,130 km.
0017:53 Europa flyby at 205,720 km.
0020:01 Amalthea flyby at 558,370 km.
0022:29 Jupiter closest approach at 721,670 km from the center of mass.
0023:17 Io flyby at 1,129,900 km.
1979-08-05 Phase Stop
1981-06-05 Start Saturn observation phase.
Time Event
1981-08-22 Encounter with Saturnian system.
0001:26:57 Iapetus flyby at 908,680 km.
1981-08-25
0001:25:26 Hyperion flyby at 431,370 km.
0009:37:46 Titan flyby at 666,190 km.
0022:57:33 Helene flyby at 314,090 km.
1981-08-26
0001:04:32 Dione flyby at 502,310 km.
0002:22:17 Calypso flyby at 151,590 km.
0002:24:26 Mimas flyby at 309,930 km.
0003:19:18 Pandora flyby at 107,000 km.
0003:24:05 Saturn closest approach at 161,000 km from the center of mass.
0003:33:02 Atlas 287,000 km.
0003:45:16 Enceladus flyby at 87,010 km.
0003:50:04 Janus at 223,000 km.
0004:05:56 Epimetheus at 147,000 km.
0006:02:47 Telesto at 270,000 km.
0006:12:30 Tethys flyby at 93,010 km.
0006:28:48 Rhea flyby at 645,260 km.
1981-09-04
0001:22:34 Phoebe flyby at 2,075,640 km.
1981-09-25 Phase Stop
1985-11-04 Start Uranus observation phase.
Time Event
1986-01-24 Encounter with Uranian system.
0016:50 Miranda flyby at 29,000 km.
0017:25 Ariel flyby at 127,000 km.
0017:25 Umbriel flyby at 325,000 km.
0017:25 Titania flyby at 365,200 km.
0017:25 Oberon flyby at 470,600 km.
0017:59:47 Uranus closest approach at 107,000 km from the center of mass.
1986-02-25 Phase Stop
1987-08-20 10 years of continuous flight and operation at 14:29:00 UTC.
1989-06-05 Start Neptune observation phase.
Time Event
1989-08-25 Encounter with Neptunian system.
0003:56:36 Neptune closest approach at 4,950 km.
0004:41 Galatea flyby at 18,360 km.
0004:51 Larissa flyby at 60,180 km.
0005:29 Proteus flyby at 97,860 km.
0009:23 Triton flyby at 39,800 km.
1989-10-02 Phase Stop
1989-10-02 Begin Voyager Interstellar Mission.
Interstellar phase
1997-08-20 20 years of continuous flight and operation at 14:29:00 UTC.
1998-11-13 Terminate scan platform and UV observations.
2007-08-20 30 years of continuous flight and operation at 14:29:00 UTC.
2007-09-06 Terminate data tape recorder operations.
2008-02-22 Terminate planetary radio astronomy experiment operations.
2011-11-07 Switch to backup thrusters to conserve power
2017-08-20 40 years of continuous flight and operation at 14:29:00 UTC.
2018-11-05 Crossed the heliopause and entered interstellar space.
2023-07-18 Voyager 2 overtook Pioneer 10 as the second farthest spacecraft from the Sun.

Launch and trajectory

The Voyager 2 probe was launched on August 20, 1977, by NASA from Space Launch Complex 41 at Cape Canaveral, Florida, aboard a Titan IIIE/Centaur launch vehicle. Two weeks later, the twin Voyager 1 probe was launched on September 5, 1977. However, Voyager 1 reached both Jupiter and Saturn sooner, as Voyager 2 had been launched into a longer, more circular trajectory.

Voyager 1's initial orbit had an aphelion of 8.9 AU (830 million mi; 1.33 billion km), just a little short of Saturn's orbit of 9.5 AU (880 million mi; 1.42 billion km). Whereas, Voyager 2's initial orbit had an aphelion of 6.2 AU (580 million mi; 930 million km), well short of Saturn's orbit.

In April 1978, no commands were transmitted to Voyager 2 for a period of time, causing the spacecraft to switch from its primary radio receiver to its backup receiver. Sometime afterwards, the primary receiver failed altogether. The backup receiver was functional, but a failed capacitor in the receiver meant that it could only receive transmissions that were sent at a precise frequency, and this frequency would be affected by the Earth's rotation (due to the Doppler effect) and the onboard receiver's temperature, among other things.

  • Voyager 2 launch on August 20, 1977, with a Titan IIIE/Centaur Voyager 2 launch on August 20, 1977, with a Titan IIIE/Centaur
  • Animation of Voyager 2's trajectory from August 20, 1977, to December 30, 2000    Voyager 2  ·   Earth ·   Jupiter  ·   Saturn ·   Uranus  ·   Neptune  ·   Sun Animation of Voyager 2's trajectory from August 20, 1977, to December 30, 2000
       Voyager 2  ·   Earth ·   Jupiter  ·   Saturn ·   Uranus  ·   Neptune  ·   Sun
  • Trajectory of Voyager 2 primary mission Trajectory of Voyager 2 primary mission
  • Plot of Voyager 2's heliocentric velocity against its distance from the Sun, illustrating the use of gravity assists to accelerate the spacecraft by Jupiter, Saturn and Uranus. Plot of Voyager 2's heliocentric velocity against its distance from the Sun, illustrating the use of gravity assists to accelerate the spacecraft by Jupiter, Saturn and Uranus.

Encounter with Jupiter

Further information: Exploration of Jupiter
Animation of Voyager 2's trajectory around Jupiter
  Voyager 2 ·   Jupiter ·   Io ·   Europa ·   Ganymede ·   Callisto
The trajectory of Voyager 2 through the Jovian system

Voyager 2's closest approach to Jupiter occurred at 22:29 UT on July 9, 1979. It came within 570,000 km (350,000 mi) of the planet's cloud tops. Jupiter's Great Red Spot was revealed as a complex storm moving in a counterclockwise direction. Other smaller storms and eddies were found throughout the banded clouds.

Voyager 2 returned images of Jupiter, as well as its moons Amalthea, Io, Callisto, Ganymede, and Europa. During a 10-hour "volcano watch", it confirmed Voyager 1's observations of active volcanism on the moon Io, and revealed how the moon's surface had changed in the four months since the previous visit. Together, the Voyagers observed the eruption of nine volcanoes on Io, and there is evidence that other eruptions occurred between the two Voyager fly-bys.

Jupiter's moon Europa displayed a large number of intersecting linear features in the low-resolution photos from Voyager 1. At first, scientists believed the features might be deep cracks, caused by crustal rifting or tectonic processes. Closer high-resolution photos from Voyager 2, however, were puzzling: the features lacked topographic relief, and one scientist said they "might have been painted on with a felt marker". Europa is internally active due to tidal heating at a level about one-tenth that of Io. Europa is thought to have a thin crust (less than 30 km (19 mi) thick) of water ice, possibly floating on a 50 km (31 mi)-deep ocean.

Two new, small satellites, Adrastea and Metis, were found orbiting just outside the ring. A third new satellite, Thebe, was discovered between the orbits of Amalthea and Io.

Media related to the Voyager 2 Jupiter encounter at Wikimedia Commons

Encounter with Saturn

Further information: Exploration of Saturn

The closest approach to Saturn occurred at 03:24:05 UT on August 26, 1981. When Voyager 2 passed behind Saturn, viewed from Earth, it utilized its radio link to investigate Saturn's upper atmosphere, gathering data on both temperature and pressure. In the highest regions of the atmosphere, where the pressure was measured at 70 mbar (1.0 psi), Voyager 2 recorded a temperature of 82 K (−191.2 °C; −312.1 °F). Deeper within the atmosphere, where the pressure was recorded to be 1,200 mbar (17 psi), the temperature rose to 143 K (−130 °C; −202 °F). The spacecraft also observed that the north pole was approximately 10 °C (18 °F) cooler at 100 mbar (1.5 psi) than mid-latitudes, a variance potentially attributable to seasonal shifts (see also Saturn Oppositions).

After its Saturn fly-by, Voyager 2's scan platform experienced an anomaly causing its azimuth actuator to seize. This malfunction led to some data loss and posed challenges for the spacecraft's continued mission. The anomaly was traced back to a combination of issues, including a design flaw in the actuator shaft bearing and gear lubrication system, corrosion, and debris build-up. While overuse and depleted lubricant were factors, other elements, such as dissimilar metal reactions and a lack of relief ports, compounded the problem. Engineers on the ground were able to issue a series of commands, rectifying the issue to a degree that allowed the scan platform to resume its function. Voyager 2, which would have been diverted to perform the Titan flyby if Voyager 1 had been unable to, did not pass near Titan due to the malfunction, and subsequently, proceeded with its mission to explore the Uranian system.

Media related to the Voyager 2 Saturn encounter at Wikimedia Commons

Encounter with Uranus

Further information: Exploration of Uranus

The closest approach to Uranus occurred on January 24, 1986, when Voyager 2 came within 81,500 km (50,600 mi) of the planet's cloudtops. Voyager 2 also discovered 11 previously unknown moons: Cordelia, Ophelia, Bianca, Cressida, Desdemona, Juliet, Portia, Rosalind, Belinda, Puck and Perdita. The mission also studied the planet's unique atmosphere, caused by its axial tilt of 97.8°; and examined the Uranian ring system. The length of a day on Uranus as measured by Voyager 2 is 17 hours, 14 minutes. Uranus was shown to have a magnetic field that was misaligned with its rotational axis, unlike other planets that had been visited to that point, and a helix-shaped magnetic tail stretching 10 million kilometers (6 million miles) away from the Sun.

When Voyager 2 visited Uranus, much of its cloud features were hidden by a layer of haze; however, false-color and contrast-enhanced images show bands of concentric clouds around its south pole. This area was also found to radiate large amounts of ultraviolet light, a phenomenon that is called "dayglow". The average atmospheric temperature is about 60 K (−351.7 °F; −213.2 °C). The illuminated and dark poles, and most of the planet, exhibit nearly the same temperatures at the cloud tops.

The Voyager 2 Planetary Radio Astronomy (PRA) experiment observed 140 lightning flashes, or Uranian electrostatic discharges with a frequency of 0.9-40 MHz. The UEDs were detected from 600,000 km of Uranus over 24 hours, most of which were not visible. However, microphysical modeling suggests that Uranian lightning occurs in convective storms occurring in deep troposphere water clouds. If this is the case, lightning will not be visible due to the thick cloud layers above the troposphere. Uranian lightning has a power of around 10 W, emits 1×10^7 J – 2×10^7 J of energy, and lasts an average of 120 ms.

Detailed images from Voyager 2's flyby of the Uranian moon Miranda showed huge canyons made from geological faults. One hypothesis suggests that Miranda might consist of a reaggregation of material following an earlier event when Miranda was shattered into pieces by a violent impact.

Voyager 2 discovered two previously unknown Uranian rings. Measurements showed that the Uranian rings are different from those at Jupiter and Saturn. The Uranian ring system might be relatively young, and it did not form at the same time that Uranus did. The particles that make up the rings might be the remnants of a moon that was broken up by either a high-velocity impact or torn up by tidal effects.

In March 2020, NASA astronomers reported the detection of a large atmospheric magnetic bubble, also known as a plasmoid, released into outer space from the planet Uranus, after reevaluating old data recorded during the flyby.

  • Uranus as viewed by Voyager 2 Uranus as viewed by Voyager 2
  • Departing image of crescent Uranus Departing image of crescent Uranus
  • Ariel as imaged from 130,000 km Ariel as imaged from 130,000 km
  • Ariel imaged from 130,000 km The rings of Uranus imaged by Voyager 2
Media related to the Voyager 2 Uranus encounter at Wikimedia Commons

Encounter with Neptune

Further information: Exploration of Neptune

Following a course correction in 1987, Voyager 2's closest approach to Neptune occurred on August 25, 1989. Through repeated computerized test simulations of trajectories through the Neptunian system conducted in advance, flight controllers determined the best way to route Voyager 2 through the Neptune–Triton system. Since the plane of the orbit of Triton is tilted significantly with respect to the plane of the ecliptic; through course corrections, Voyager 2 was directed into a path about 4,950 km (3,080 mi) above the north pole of Neptune. Five hours after Voyager 2 made its closest approach to Neptune, it performed a close fly-by of Triton, Neptune's largest moon, passing within about 40,000 km (25,000 mi).

In 1989, the Voyager 2 Planetary Radio Astronomy (PRA) experiment observed around 60 lightning flashes, or Neptunian electrostatic discharges emitting energies over 7×10 J. A plasma wave system (PWS) detected 16 electromagnetic wave events with a frequency range of 50 Hz – 12 kHz at magnetic latitudes 7˚-33˚. These plasma wave detections were possibly triggered by lightning over 20 minutes in the ammonia clouds of the magnetosphere. During Voyager 2's closest approach to Neptune, the PWS instrument provided Neptune’s first plasma wave detections at a sample rate of 28,800 samples per second. The measured plasma densities range from 10 – 10 cm.

Voyager 2 discovered previously unknown Neptunian rings, and confirmed six new moons: Despina, Galatea, Larissa, Proteus, Naiad and Thalassa. While in the neighborhood of Neptune, Voyager 2 discovered the "Great Dark Spot", which has since disappeared, according to observations by the Hubble Space Telescope. The Great Dark Spot was later hypothesized to be a region of clear gas, forming a window in the planet's high-altitude methane cloud deck.

Media related to the Voyager 2 Neptune encounter at Wikimedia Commons

Interstellar mission

Voyager 2 left the heliosphere on November 5, 2018.
Voyager 1 and 2 speed and distance from Sun

Once its planetary mission was over, Voyager 2 was described as working on an interstellar mission, which NASA is using to find out what the Solar System is like beyond the heliosphere. As of September 2023 Voyager 2 is transmitting scientific data at about 160 bits per second. Information about continuing telemetry exchanges with Voyager 2 is available from Voyager Weekly Reports.

Official NASA map of the Pioneer 10, Pioneer 11, Voyager 1, and Voyager 2 spacecraft's trajectories through the Solar System.
NASA map showing trajectories of the Pioneer 10, Pioneer 11, Voyager 1, and Voyager 2 spacecraft.

In 1992, Voyager 2 observed the nova V1974 Cygni in the far-ultraviolet, first of its kind. The further increase in the brightness at those wavelengths helped in the more detailed study of the nova.

In July 1994, an attempt was made to observe the impacts from fragments of the comet Comet Shoemaker–Levy 9 with Jupiter. The craft's position meant it had a direct line of sight to the impacts and observations were made in the ultraviolet and radio spectrum. Voyager 2 failed to detect anything, with calculations showing that the fireballs were just below the craft's limit of detection.

On November 29, 2006, a telemetered command to Voyager 2 was incorrectly decoded by its on-board computer—in a random error—as a command to turn on the electrical heaters of the spacecraft's magnetometer. These heaters remained turned on until December 4, 2006, and during that time, there was a resulting high temperature above 130 °C (266 °F), significantly higher than the magnetometers were designed to endure, and a sensor rotated away from the correct orientation.

On August 30, 2007, Voyager 2 passed the termination shock and then entered into the heliosheath, approximately 1 billion mi (1.6 billion km) closer to the Sun than Voyager 1 did. This is due to the interstellar magnetic field of deep space. The southern hemisphere of the Solar System's heliosphere is being pushed in.

On April 22, 2010, Voyager 2 encountered scientific data format problems. On May 17, 2010, JPL engineers revealed that a flipped bit in an on-board computer had caused the problem, and scheduled a bit reset for May 19. On May 23, 2010, Voyager 2 resumed sending science data from deep space after engineers fixed the flipped bit.

In 2013, it was originally thought that Voyager 2 would enter interstellar space in two to three years, with its plasma spectrometer providing the first direct measurements of the density and temperature of the interstellar plasma. But the Voyager project scientist, Edward C. Stone and his colleagues said they lacked evidence of what would be the key signature of interstellar space: a shift in the direction of the magnetic field. Finally, in December 2018, Stone announced that Voyager 2 reached interstellar space on November 5, 2018.

The position of Voyager 2 in December 2018. Note the vast distances condensed into a logarithmic scale: Earth is one astronomical unit (AU) from the Sun; Saturn is at 10 AU, and the heliopause is at around 120 AU. Neptune is 30.1 AU from the Sun; thus the edge of interstellar space is around four times as far from the Sun as the last planet.

Maintenance to the Deep Space Network cut outbound contact with the probe for eight months in 2020. Contact was reestablished on November 2, when a series of instructions was transmitted, subsequently executed, and relayed back with a successful communication message. On February 12, 2021, full communications were restored after a major ground station antenna upgrade that took a year to complete.

In October 2020, astronomers reported a significant unexpected increase in density in the space beyond the Solar System as detected by the Voyager 1 and Voyager 2; this implies that "the density gradient is a large-scale feature of the VLISM (very local interstellar medium) in the general direction of the heliospheric nose".

On July 18, 2023, Voyager 2 overtook Pioneer 10 as the second farthest spacecraft from the Sun.

On July 21, 2023, a programming error misaligned Voyager 2's high gain antenna 2 degrees away from Earth, breaking communications with the spacecraft. By August 1, the spacecraft's carrier signal was detected using multiple antennas of the Deep Space Network. A high-power "shout" on August 4 sent from the Canberra station successfully commanded the spacecraft to reorient towards Earth, resuming communications. As a failsafe measure, the probe is also programmed to autonomously reset its orientation to point towards Earth, which would have occurred by October 15.

Reductions in capabilities

As the power from the RTG slowly reduces, various items of equipment have been turned off on the spacecraft. The first science equipment turned off on Voyager 2 was the PPS in 1991, which saved 1.2 watts.

Year End of specific capabilities as a result of the available electrical power limitations
1998 Termination of scan platform and UVS observations
2007 Termination of Digital Tape Recorder (DTR) operations (It was no longer needed due to a failure on the High Waveform Receiver on the Plasma Wave Subsystem (PWS) on June 30, 2002.)
2008 Power off Planetary Radio Astronomy Experiment (PRA)
2019 CRS heater turned off
2021 Turn off heater for Low Energy Charged Particle instrument
2023 Software update reroutes power from the voltage regulator to keep the science instruments operating
2024 Plasma Science instrument (PLS) turned off
2030 approx Can no longer power any instrument
2036 Out of range of the Deep Space Network

Concerns with the orientation thrusters

Some thrusters needed to control the correct attitude of the spacecraft and to point its high-gain antenna in the direction of Earth are out of use due to clogging problems in their hydrazine injector. The spacecraft no longer has backups available for its thruster system and "everything onboard is running on single-string" as acknowledged by Suzanne Dodd, Voyager project manager at JPL, in an interview with Ars Technica. NASA has decided to patch the computer software in order to modify the functioning of the remaining thrusters to slow down the clogging of the small diameter hydrazine injector jets. Before uploading the software update on the Voyager 1 computer, NASA will first try the procedure with Voyager 2, which is closer to Earth.

Future of the probe

The probe is expected to keep transmitting weak radio messages until at least the mid-2020s, more than 48 years after it was launched. NASA says that "The Voyagers are destined—perhaps eternally—to wander the Milky Way."

Voyager 2 is not headed toward any particular star. The nearest star is 4.2 light-years away, and at 15.341 km/s, the spacecraft travels one light-year in about 19,541 years - during which time the nearby stars will also move substantially. In roughly 42,000 years, Voyager 2 will pass the star Ross 248 (10.30 light-years away from Earth) at a distance of 1.7 light-years. If undisturbed for 296,000 years, Voyager 2 should pass by the star Sirius (8.6 light-years from Earth) at a distance of 4.3 light-years.

Golden record

Main article: Voyager Golden Record
A child's greeting in English recorded on the Voyager Golden Record
Voyager Golden Record

Both Voyager space probes carry a gold-plated audio-visual disc, a compilation meant to showcase the diversity of life and culture on Earth in the event that either spacecraft is ever found by any extraterrestrial discoverer. The record, made under the direction of a team including Carl Sagan and Timothy Ferris, includes photos of the Earth and its lifeforms, a range of scientific information, spoken greetings from people such as the Secretary-General of the United Nations and the President of the United States and a medley, "Sounds of Earth", that includes the sounds of whales, a baby crying, waves breaking on a shore, and a collection of music spanning different cultures and eras including works by Wolfgang Amadeus Mozart, Blind Willie Johnson, Chuck Berry and Valya Balkanska. Other Eastern and Western classics are included, as well as performances of indigenous music from around the world. The record also contains greetings in 55 different languages. The project aimed to portray the richness of life on Earth and stand as a testament to human creativity and the desire to connect with the cosmos.

See also

Notes

  1. To observe Triton, Voyager 2 passed over Neptune's north pole, resulting in an acceleration out of the plane of the ecliptic, and, as a result, a reduced velocity relative to the Sun.
  2. Some sources cite the discovery of only 10 Uranian moons by Voyager 2, but Perdita was discovered in Voyager 2 images more than a decade after they were taken.
  3. One of these moons, Larissa, was first reported in 1981 from ground telescope observations, but not confirmed until the Voyager 2 approach.

References

  1. "Voyager: Mission Information". NASA. 1989. Archived from the original on February 20, 2017. Retrieved January 2, 2011.
  2. ^ "Voyager 2". US National Space Science Data Center. Archived from the original on January 31, 2017. Retrieved August 25, 2013.
  3. ^ "Voyager 2". NASA's Solar System Exploration website. Archived from the original on April 20, 2017. Retrieved December 4, 2022.
  4. ^ "Voyager – Mission Status". Jet Propulsion Laboratory. National Aeronautics and Space Administration. Archived from the original on January 1, 2018. Retrieved July 9, 2023.
  5. Staff (September 9, 2012). "Where are the Voyagers?". NASA. Archived from the original on March 10, 2017. Retrieved September 9, 2012.
  6. University of Iowa (November 4, 2019). "Voyager 2 reaches interstellar space – Iowa-led instrument detects plasma density jump, confirming spacecraft has entered the realm of the stars". EurekAlert!. Archived from the original on April 13, 2020. Retrieved November 4, 2019.
  7. Chang, Kenneth (November 4, 2019). "Voyager 2's Discoveries From Interstellar Space – In its journey beyond the boundary of the solar wind's bubble, the probe observed some notable differences from its twin, Voyager 1". The New York Times. Archived from the original on April 13, 2020. Retrieved November 5, 2019.
  8. ^ Gill, Victoria (December 10, 2018). "Nasa's Voyager 2 probe 'leaves the Solar System'". BBC News. Archived from the original on December 15, 2019. Retrieved December 10, 2018.
  9. ^ Brown, Dwayne; Fox, Karen; Cofield, Calia; Potter, Sean (December 10, 2018). "Release 18–115 – NASA's Voyager 2 Probe Enters Interstellar Space". NASA. Archived from the original on June 27, 2023. Retrieved December 10, 2018.
  10. ^ "At last, Voyager 1 slips into interstellar space – Atom & Cosmos". Science News. September 12, 2013. Archived from the original on September 15, 2013. Retrieved September 17, 2013.
  11. NASA Voyager – The Interstellar Mission Mission Overview Archived May 2, 2011, at the Wayback Machine
  12. ^ Shannon Stirone (February 12, 2021). "Earth to Voyager 2: After a Year in the Darkness, We Can Talk to You Again – NASA's sole means of sending commands to the distant space probe, launched 44 years ago, is being restored on Friday". The New York Times. Archived from the original on December 28, 2021. Retrieved February 14, 2021.
  13. ^ Butrica, Andrew. From Engineering Science to Big Science. p. 267. Archived from the original on February 29, 2020. Retrieved September 4, 2015. Despite the name change, Voyager remained in many ways the Grand Tour concept, though certainly not the Grand Tour (TOPS) spacecraft.
  14. Planetary Voyage Archived August 26, 2013, at the Wayback Machine NASA Jet Propulsion Laboratory – California Institute of Technology. March 23, 2004. Retrieved April 8, 2007.
  15. David W. Swift (January 1, 1997). Voyager Tales: Personal Views of the Grand Tour. AIAA. p. 69. ISBN 978-1-56347-252-7.
  16. Jim Bell (February 24, 2015). The Interstellar Age: Inside the Forty-Year Voyager Mission. Penguin Publishing Group. p. 93. ISBN 978-0-698-18615-6.
  17. ^ "Voyager 2: Host Information". NASA. 1989. Archived from the original on February 20, 2017. Retrieved January 2, 2011.
  18. Ludwig, Roger; Taylor, Jim (2013). "Voyager Telecommunications" (PDF). Archived (PDF) from the original on August 8, 2023. Retrieved August 7, 2023.
  19. "NASA News Press Kit 77–136". JPL/NASA. Archived from the original on May 29, 2019. Retrieved December 15, 2014.
  20. Furlong, Richard R.; Wahlquist, Earl J. (1999). "U.S. space missions using radioisotope power systems" (PDF). Nuclear News. 42 (4): 26–34. Archived from the original (PDF) on October 16, 2018. Retrieved January 2, 2011.
  21. ^ "NASA's Voyager Will Do More Science With New Power Strategy". NASA Jet Propulsion Laboratory. Archived from the original on April 27, 2023. Retrieved April 28, 2023.
  22. "NASA Turns Off Science Instrument to Save Voyager 2 Power". NASA. October 1, 2024.
  23. "MR-103". Astronautix.com. Archived from the original on December 28, 2016. Retrieved December 11, 2018.
  24. "Voyager Backgrounder" (PDF). Nasa.gov. Nasa. October 1980. Archived (PDF) from the original on June 9, 2019. Retrieved December 11, 2018.
  25. Koerner, Brendan (November 6, 2003). "What Fuel Does Voyager 1 Use?". Slate.com. Archived from the original on December 11, 2018. Retrieved December 11, 2018.
  26. NASA/JPL (August 26, 2003). "Voyager 1 Narrow Angle Camera Description". NASA / PDS. Archived from the original on October 2, 2011. Retrieved January 17, 2011.
  27. NASA/JPL (August 26, 2003). "Voyager 1 Wide Angle Camera Description". NASA / PDS. Archived from the original on August 11, 2011. Retrieved January 17, 2011.
  28. "Voyager 2 Full Mission Timeline" Archived July 23, 2011, at the Wayback Machine Muller, Daniel, 2010
  29. "Voyager Mission Description" Archived October 7, 2018, at the Wayback Machine NASA, February 19, 1997
  30. "JPL Mission Information" Archived February 20, 2017, at the Wayback Machine NASA, JPL, PDS.
  31. Sullivant, Rosemary (November 5, 2011). "Voyager 2 to Switch to Backup Thruster Set". JPL. 2011-341. Archived from the original on February 26, 2021. Retrieved October 5, 2018.
  32. ^ "Distance between the Sun and Voyager 2". Archived from the original on July 9, 2023. Retrieved July 18, 2023.
  33. ^ "Distance between the Sun and Pioneer 10". Archived from the original on July 14, 2023. Retrieved July 18, 2023.
  34. ^ "Voyager - Fact Sheet". NASA/JPL. Archived from the original on April 13, 2020. Retrieved June 9, 2024.
  35. ^ "Voyager - Fast Facts". NASA/JPL. Archived from the original on May 22, 2022. Retrieved June 9, 2024.
  36. HORIZONS Archived October 7, 2012, at the Wayback Machine, JPL Solar System Dynamics (Ephemeris Type ELEMENTS; Target Body: Voyager n (spacecraft); Center: Sun (body center); Time Span: launch + 1 month to Jupiter encounter – 1 month)
  37. "40 Years Ago: Voyager 2 Explores Jupiter – NASA". July 8, 2019. Archived from the original on April 4, 2024. Retrieved April 4, 2024.
  38. Littmann, Mark (2004). Planets Beyond: Discovering the Outer Solar System. Courier Corporation. p. 106. ISBN 978-0-486-43602-9.
  39. Davies, John (January 23, 1986). "Voyage to the tilted planet". New Scientist. p. 42.
  40. "Basics of space flight: Interplanetary Trajectories". Archived from the original on September 4, 2015. Retrieved October 5, 2018.
  41. "History". www.jpl.nasa.gov. Archived from the original on April 16, 2022. Retrieved October 5, 2018.
  42. "Voyager Mission Description". pdsseti. Archived from the original on October 7, 2018. Retrieved June 22, 2024.
  43. "NASA – NSSDCA – Master Catalog – Event Query". nssdc.gsfc.nasa.gov. Archived from the original on March 26, 2019. Retrieved October 5, 2018.
  44. "Saturn Approach". Jet Propulsion Laboratory. Archived from the original on August 9, 2023. Retrieved September 8, 2023.
  45. ^ "Voyager – Frequently Asked Questions". Jet Propulsion Laboratory. Archived from the original on August 13, 2023. Retrieved December 11, 2018.
  46. Laeser, Richard P. (1987). "Engineering the voyager uranus mission". Acta Astronautica. 16. Jet Propulsion Laboratory: 75–82. Bibcode:1986inns.iafcQ....L. doi:10.1016/0094-5765(87)90096-8. Retrieved September 8, 2023.
  47. Jet Propulsion Laboratory (May 30, 1995). "Lesson 394: Voyager Scan Platform Problems". NASA Public Lessons Learned System. NASA. Archived from the original on September 8, 2023. Retrieved September 8, 2023.
  48. Bell, Jim (February 24, 2015). The Interstellar Age: Inside the Forty-Year Voyager Mission. Penguin Publishing Group. p. 93. ISBN 978-0-698-18615-6. Archived from the original on September 4, 2016.
  49. ^ "Uranus Approach" Archived September 9, 2018, at the Wayback Machine NASA Jet Propulsion Laboratory, California Institute of Technology. Accessed December 11, 2018.
  50. ^ Elizabeth Landau (2016) "Voyager Mission Celebrates 30 Years Since Uranus" Archived May 5, 2017, at the Wayback Machine National Aeronautics and Space Administration, January 22, 2016. Accessed December 11, 2018
  51. ^ Voyager 2 Mission Team (2012) "1986: Voyager at Uranus" Archived May 24, 2019, at the Wayback Machine NASA Science: Solar System Exploration, December 14, 2012. Accessed December 11, 2018.
  52. Karkoschka, E. (2001). "Voyager's Eleventh Discovery of a Satellite of Uranus and Photometry and the First Size Measurements of Nine Satellites". Icarus. 151 (1): 69–77. Bibcode:2001Icar..151...69K. doi:10.1006/icar.2001.6597.
  53. Russell, C. T. (1993). "Planetary magnetospheres". Reports on Progress in Physics. 56 (6): 687–732. Bibcode:1993RPPh...56..687R. doi:10.1088/0034-4885/56/6/001. S2CID 250897924.
  54. ^ Aplin, K.L.; Fischer, G.; Nordheim, T.A.; Konovalenko, A.; Zakharenko, V.; Zarka, P. (2020). "Atmospheric Electricity at the Ice Giants". Space Science Reviews. 216 (2): 26. arXiv:1907.07151. Bibcode:2020SSRv..216...26A. doi:10.1007/s11214-020-00647-0.
  55. ^ Zarka, P.; Pederson, B.M. (1986). "Radio detection of uranian lightning by Voyager 2". Nature. 323 (6089): 605-608. Bibcode:1986Natur.323..605Z. doi:10.1038/323605a0.
  56. Hatfield, Miles (March 25, 2020). "Revisiting Decades-Old Voyager 2 Data, Scientists Find One More Secret – Eight and a half years into its grand tour of the solar system, NASA's Voyager 2 spacecraft was ready for another encounter. It was Jan. 24, 1986, and soon it would meet the mysterious seventh planet, icy-cold Uranus". NASA. Archived from the original on March 27, 2020. Retrieved March 27, 2020.
  57. Andrews, Robin George (March 27, 2020). "Uranus Ejected a Giant Plasma Bubble During Voyager 2's Visit – The planet is shedding its atmosphere into the void, a signal that was recorded but overlooked in 1986 when the robotic spacecraft flew past". The New York Times. Archived from the original on March 27, 2020. Retrieved March 27, 2020.
  58. "Voyager Steered Toward Neptune". Ukiah Daily Journal. March 15, 1987. Archived from the original on December 7, 2017. Retrieved December 6, 2017.
  59. ^ National Aeronautics and Space Administration "Neptune Approach" Archived September 9, 2018, at the Wayback Machine NASA Jet Propulsion Laboratory: California Institute of Technology. Accessed December 12, 2018.
  60. "Neptune". Jet Propulsion Laboratory. Archived from the original on March 4, 2016. Retrieved March 3, 2016.
  61. Borucki, W.J. (1989). "Predictions of lightning activity at Neptune". Geophysical Research Letters. 16 (8): 937-939. Bibcode:1989GeoRL..16..937B. doi:10.1029/gl016i008p00937.
  62. ^ Gurnett, D. A.; Kurth, W. S.; Cairns, I. H.; Granroth, L. J. (1990). "Whistlers in Neptune's magnetosphere: Evidence of atmospheric lightning". Journal of Geophysical Research: Space Physics. 95 (A12): 20967-20976. Bibcode:1990JGR....9520967G. doi:10.1029/ja095ia12p20967. hdl:2060/19910002329.
  63. Belcher, J.W.; Bridge, H.S.; Bagenal, F.; Coppi, B.; Divers, O.; Eviatar, A.; Gordon, G.S.; Lazarus, A.J.; McNutt, R.L.; Ogilvie, K.W.; Richardson, J.D.; Siscoe, G.L.; Sittler, E.C.; Steinberg, J.T.; Sullivan, J.D.; Szabo, A.; Villanueva, L.; Vasyliunas, V.M.; Zhang, M. (1989). "Plasma observations near Neptune: Initial results from Voyager 2". Science. 246 (4936): 1478–1483. Bibcode:1989Sci...246.1478B. doi:10.1126/science.246.4936.1478. PMID 17756003.
  64. National Aeronautics and Space Administration "Neptune Moons" Archived April 10, 2020, at the Wayback Machine NASA Science: Solar System Exploration. Updated December 6, 2017. Accessed December 12, 2018.
  65. ^ Elizabeth Howell (2016) "Neptune's Moons: 14 Discovered So Far" Archived December 15, 2018, at the Wayback Machine Space.com, June 30, 2016. Accessed December 12, 2018.
  66. Phil Plait (2016) "Neptune Just Got a Little Dark" Archived December 15, 2018, at the Wayback Machine Slate, June 24, 2016. Accessed December 12, 2018.
  67. National Aeronautics and Space Administration (1998) "Hubble Finds New Dark Spot on Neptune" Archived June 11, 2017, at the Wayback Machine NASA Jet Propulsion Laboratory: California Institute of Technology, August 2, 1998. Accessed December 12, 2018.
  68. "Voyager Space Flight Operations Schedule" (PDF). Voyager Mission Status. Jet Propulsion Laboratory. September 7, 2023. Archived (PDF) from the original on September 8, 2023. Retrieved September 8, 2023.
  69. "Voyager Weekly Reports". Voyager.jpl.nasa.gov. September 6, 2013. Archived from the original on September 21, 2013. Retrieved September 14, 2013.
  70. ^ Ulivi, Paolo; Harland, David M (2007). Robotic Exploration of the Solar System Part I: The Golden Age 1957–1982. Springer. p. 449. ISBN 978-0-387-49326-8.
  71. V1974 Cygni 1992: The Most Important Nova of the Century (PDF) (Report). Archived (PDF) from the original on May 6, 2023. Retrieved June 9, 2024.
  72. Shuai, Ping (2021). Understanding Pulsars and Space Navigations. Springer Singapore. p. 189. ISBN 9789811610677. Archived from the original on April 5, 2023. Retrieved March 20, 2023.
  73. "NASA – Voyager 2 Proves Solar System Is Squashed". www.nasa.gov. Archived from the original on April 13, 2020. Retrieved October 5, 2018.
  74. Voyager 2 finds solar system's shape is 'dented' # 2007-12-10, Week Ending December 14, 2007. Archived September 27, 2020, at the Wayback Machine Retrieved December 12, 2007.
  75. John Antczak (May 6, 2010). "NASA working on Voyager 2 data problem". Associated Press. Archived from the original on March 5, 2016. Retrieved October 5, 2018.
  76. "Engineers Diagnosing Voyager 2 Data System". Jet Propulsion Laboratory. Archived from the original on June 12, 2010. Retrieved May 17, 2010.
  77. "NASA Fixes Bug On Voyager 2". Archived from the original on May 27, 2010. Retrieved May 25, 2010.
  78. Dockrill, Peter (November 5, 2020). "NASA finally makes contact with Voyager 2 after longest radio silence in 30 years". Live Science. Archived from the original on November 5, 2020. Retrieved November 5, 2020.
  79. Starr, Michelle (October 19, 2020). "Voyager Spacecraft Detect an Increase in The Density of Space Outside The Solar System". ScienceAlert. Archived from the original on October 19, 2020. Retrieved October 19, 2020.
  80. Kurth, W.S.; Gurnett, D.A. (August 25, 2020). "Observations of a Radial Density Gradient in the Very Local Interstellar Medium by Voyager 2". The Astrophysical Journal Letters. 900 (1): L1. Bibcode:2020ApJ...900L...1K. doi:10.3847/2041-8213/abae58. S2CID 225312823.
  81. Inskeep, Steve (August 2, 2023). "NASA loses contact with Voyager Two after a programming error on Earth". NPR. Archived from the original on August 2, 2023. Retrieved January 15, 2023.
  82. "Voyager 2: Nasa picks up 'heartbeat' signal after sending wrong command". BBC News. August 1, 2023. Archived from the original on August 2, 2023. Retrieved August 2, 2023.
  83. ^ "Mission Update: Voyager 2 Communications Pause – The Sun Spot". blogs.nasa.gov. July 28, 2023. Archived from the original on July 29, 2023. Retrieved July 29, 2023.
  84. Ellen Francis (August 5, 2023). "'Interstellar shout' restores NASA contact with lost Voyager 2 spacecraft". Washington Post. Archived from the original on August 5, 2023. Retrieved August 5, 2023.
  85. "Voyager 2: Nasa fully back in contact with lost space probe". BBC News. August 4, 2023. Archived from the original on August 4, 2023. Retrieved August 4, 2023.
  86. ^ "Voyager – Operations Plan to the End Mission". voyager.jpl.nasa.gov. Archived from the original on September 10, 2020. Retrieved September 20, 2019.
  87. ^ "Voyager – Spacecraft – Spacecraft Lifetime". NASA Jet Propulsion Laboratory. March 15, 2008. Archived from the original on March 1, 2017. Retrieved May 25, 2008.
  88. "A New Plan for Keeping NASA's Oldest Explorers Going". NASA/JPL. Archived from the original on April 13, 2020. Retrieved January 2, 2020.
  89. Stirone, Shannon (February 12, 2021). "Earth to Voyager 2: After a Year in the Darkness, We Can Talk to You Again". The New York Times. Archived from the original on February 12, 2021. Retrieved February 12, 2021.
  90. "NASA Turns Off Science Instrument to Save Voyager 2 Power". Jet Propulsion Laboratory. October 1, 2024.
  91. Folger, T. (July 2022). "Record-Breaking Voyager Spacecraft Begin to Power Down". Scientific American. 327 (1): 26. doi:10.1038/scientificamerican0722-26. PMID 39016957. Archived from the original on June 23, 2022. Retrieved August 14, 2023.
  92. ^ Clark, Stephen (October 24, 2023). "NASA wants the Voyagers to age gracefully, so it's time for a software patch". Ars Technica. Archived from the original on October 27, 2023. Retrieved October 27, 2023.
  93. "Future". NASA. Archived from the original on May 14, 2012. Retrieved October 13, 2013.
  94. Bailer-Jones, Coryn A. L.; Farnocchia, Davide (April 3, 2019). "Future stellar flybys of the Voyager and Pioneer spacecraft". Research Notes of the AAS. 3 (4): 59. arXiv:1912.03503. Bibcode:2019RNAAS...3...59B. doi:10.3847/2515-5172/ab158e. S2CID 134524048.
  95. Baldwin, Paul (December 4, 2017). "NASA's Voyager 2 heads for star Sirius... by time it arrives humans will have died out". Express.co.uk. Archived from the original on September 1, 2022. Retrieved September 1, 2022.
  96. Ferris, Timothy (May 2012). "Timothy Ferris on Voyagers' Never-Ending Journey". Smithsonian Magazine. Archived from the original on November 4, 2013. Retrieved August 19, 2013.
  97. ^ Gambino, Megan. "What Is on Voyager's Golden Record?". Smithsonian Magazine. Archived from the original on April 8, 2020. Retrieved January 15, 2024.
  98. "Voyager Golden record". JPL. Archived from the original on September 27, 2011. Retrieved August 18, 2013.
  99. Ferris, Timothy (August 20, 2017). "How the Voyager Golden Record Was Made". The New Yorker. ISSN 0028-792X. Archived from the original on January 15, 2024. Retrieved January 15, 2024.

Further reading

External links

Voyager program
Spacecraft
Components
Images
Voyager team
Related
Observation
targets
Exploration of Jupiter
Exploration of Saturn
Exploration of Uranus
Exploration of Neptune
Popular culture
Spacecraft missions to Jupiter
Flybys
Orbiters
Atmospheric probes
En route
Planned missions
Proposed missions
Cancelled
or not developed
Related topics
Missions are ordered by launch date. Sign indicates failure en route or before intended mission data returned. indicates use of the planet as a gravity assist en route to another destination.
Spacecraft missions to Saturn
Past
Flybys
Orbiters
Landers

Planned
Proposed
Saturn, rings
Enceladus
Titan
Several moons
  • There are no ongoing missions to Saturn
Uranus
Geography
Major moons
Astronomy
Discovery
General
Co-orbitals
Exploration
Past
Future
Proposals
Related
Neptune
Geography
True color NASA image of Neptune
True color NASA image of Neptune
Moons
Astronomy
Discovery
General
Trojans
Exploration
Past
Proposals
Not selected
Related
Science instruments on satellites and spacecraft
Radar
Radio science
Radiometer
Microwave
Near-Earth
Interplanetary
Infrared-visible
Near-Earth
Interplanetary
Ultraviolet (UV)
Near-Earth
Spectrophotometers
Long wavelength
Interplanetary
Visible-IR (VIRS)
Near-Earth
Interplanetary
UV-visible (UVVS)
Interplanetary
Raman
Interplanetary
Magnetometer
Near-Earth
Interplanetary
Triaxial fluxgate
Near-Earth
Interplanetary
Helium vapor
Near-Earth
Interplanetary
Particle
detectors
Ion detectors
Near-Earth
Interplanetary
Neutral particle detector
Interplanetary
Mass spectrometer
Interplanetary
  • MASPEX (Europa Clipper)
  • MOMA (Rosalind Franklin rover)
Seismometers
Imagers/telescopes
Microscopes
Astronomical
instruments
Misc
NASA
Policy and history
History
(creation)
General
Human spaceflight
programs
Past
Current
Robotic programs
Past
Current
Individual featured
missions
(human and robotic)
Past
Currently
operating
Future
Communications
and navigation
NASA lists
NASA images
and artwork
Related
21st-century space probes
Active space probes
(deep space missions)
Sun
Moon
Mars
Other planets
Minor planets
Interstellar space
Completed after 2000
(by termination date)
2000s
2010s
2020s
← 1976Orbital launches in 19771978 →
Payloads are separated by bullets ( · ), launches by pipes ( | ). Crewed flights are indicated in underline. Uncatalogued launch failures are listed in italics. Payloads deployed from other spacecraft are denoted in (brackets).
Extremes of motion
Speed
Distance
Endurance
See also
Categories:
Voyager 2: Difference between revisions Add topic