Revision as of 10:50, 3 April 2013 edit76.87.112.31 (talk) →Soft science: The Fuzzy Voting System (FVS): removed irrelevant opinion content← Previous edit | Revision as of 15:38, 8 April 2013 edit undoZsoftua (talk | contribs)77 editsNo edit summaryNext edit → | ||
Line 81: | Line 81: | ||
It is an open question to give supports for a ''Church thesis'' for ] the proposed notion of recursive enumerability for fuzzy subsets is the adequate one. To this aim, an extension of the notions of fuzzy grammar and fuzzy Turing machine should be necessary (see for example Wiedermann's paper). Another open question is to start from this notion to find an extension of ]'s theorems to fuzzy logic. | It is an open question to give supports for a ''Church thesis'' for ] the proposed notion of recursive enumerability for fuzzy subsets is the adequate one. To this aim, an extension of the notions of fuzzy grammar and fuzzy Turing machine should be necessary (see for example Wiedermann's paper). Another open question is to start from this notion to find an extension of ]'s theorems to fuzzy logic. | ||
===Synthesis of fuzzy logic functions given in tabular form=== | |||
It is known that any ] function could be represented using a truth table mapping each set of variable values into set of values {0,1}. The task of synthesis of boolean logic function given in tabular form is one of basic tasks in traditional logic that is solved via disjunctive (conjunctive) perfect normal form. | |||
Each fuzzy (continuous) logic function could be represented by a choice table containing all possible variants of comparing arguments and their negations. A choice table maps each variant into value of an argument or a negation of an argument. For instance, for two arguments | |||
a row of choice table contains a variant of comparing values x<sub>1</sub>, ¬x<sub>1</sub>, x<sub>2</sub>, ¬x<sub>2</sub> and the corresponding function value | |||
f( x <sub>2</sub> ≤ ¬x<sub>1</sub> ≤ x<sub>1</sub> ≤ ¬x<sub>2</sub> ) = ¬x<sub>1</sub> | |||
The task of synthesis of fuzzy logic function given in tabular form was solved in <ref>, Sarbei V.G., Sleptsov A.I., </ref>. New concepts of constituents of minimum and maximum were introduced. The sufficient and necessary conditions that a choice table defines a fuzzy logic function were derived. | |||
==Fuzzy databases== | ==Fuzzy databases== |
Revision as of 15:38, 8 April 2013
For other uses, see Fuzzy logic (disambiguation).Fuzzy logic is a form of many-valued logic or probabilistic logic; it deals with reasoning that is approximate rather than fixed and exact. Compared to traditional binary sets (where variables may take on true or false values) fuzzy logic variables may have a truth value that ranges in degree between 0 and 1. Fuzzy logic has been extended to handle the concept of partial truth, where the truth value may range between completely true and completely false. Furthermore, when linguistic variables are used, these degrees may be managed by specific functions.
The term "fuzzy logic" was introduced with the 1965 proposal of fuzzy set theory by Lotfi A. Zadeh. Fuzzy logic has been applied to many fields, from control theory to artificial intelligence. Fuzzy logics however had been studied since the 1920s as infinite-valued logics notably by Łukasiewicz and Tarski.
Overview
Fuzzy logic allows for approximate values and inferences as well as incomplete or ambiguous data (fuzzy data) as opposed to only relying on crisp data (binary yes/no choices).
Degrees of truth
In standard mathematics, propositions can typically be considered unambiguously true or false. For instance, the proposition zero belongs to the set { 0 } is regarded as simply false; while the proposition one belongs to the set { 1 } is regarded as simply true. However, some mathematicians, computer scientists, and philosophers have been attracted to the idea that a proposition might be more or less true, rather than simply true or simply false. Consider My coffee is hot.
In mathematics, this idea can be developed in terms of fuzzy logic. In computer science, it has found application in artificial intelligence. In philosophy, the idea has proved particularly appealing in the case of vagueness. Degrees of truth is an important concept in law.
Both degrees of truth and probabilities range between 0 and 1 and hence may seem similar at first. For example, let a 100 ml glass contain 30 ml of water. Then we may consider two concepts: Empty and Full. The meaning of each of them can be represented by a certain fuzzy set. Then one might define the glass as being 0.7 empty and 0.3 full. Note that the concept of emptiness would be subjective and thus would depend on the observer or designer. Another designer might equally well design a set membership function where the glass would be considered full for all values down to 50 ml. It is essential to realize that fuzzy logic uses truth degrees as a mathematical model of the vagueness phenomenon while probability is a mathematical model of ignorance.
Applying truth values
A basic application might characterize subranges of a continuous variable. For instance, a temperature measurement for anti-lock brakes might have several separate membership functions defining particular temperature ranges needed to control the brakes properly. Each function maps the same temperature value to a truth value in the 0 to 1 range. These truth values can then be used to determine how the brakes should be controlled.
In this image, the meanings of the expressions cold, warm, and hot are represented by functions mapping a temperature scale. A point on that scale has three "truth values"—one for each of the three functions. The vertical line in the image represents a particular temperature that the three arrows (truth values) gauge. Since the red arrow points to zero, this temperature may be interpreted as "not hot". The orange arrow (pointing at 0.2) may describe it as "slightly warm" and the blue arrow (pointing at 0.8) "fairly cold".
Linguistic variables
While variables in mathematics usually take numerical values, in fuzzy logic applications, the non-numeric linguistic variables are often used to facilitate the expression of rules and facts.
A linguistic variable such as age may have a value such as young or its antonym old. However, the great utility of linguistic variables is that they can be modified via linguistic hedges applied to primary terms. The linguistic hedges can be associated with certain functions.
Early applications
The Japanese were the first to utilize fuzzy logic for practical applications. The first notable application was on the high-speed train in Sendai, in which fuzzy logic was able to improve the economy, comfort, and precision of the ride. It has also been used in recognition of hand written symbols in Sony pocket computers, Canon auto-focus technology, Omron auto-aiming cameras, earthquake prediction and modeling at the Institute of Seismology Bureau of Metrology in Japan, etc.
Example
Hard science with IF-THEN rules
Fuzzy set theory defines fuzzy operators on fuzzy sets. The problem in applying this is that the appropriate fuzzy operator may not be known. For this reason, fuzzy logic usually uses IF-THEN rules, or constructs that are equivalent, such as fuzzy associative matrices.
Rules are usually expressed in the form:
IF variable IS property THEN action
For example, a simple temperature regulator that uses a fan might look like this:
IF temperature IS very cold THEN stop fan IF temperature IS cold THEN turn down fan IF temperature IS normal THEN maintain level IF temperature IS hot THEN speed up fan
There is no "ELSE" – all of the rules are evaluated, because the temperature might be "cold" and "normal" at the same time to different degrees.
The AND, OR, and NOT operators of boolean logic exist in fuzzy logic, usually defined as the minimum, maximum, and complement; when they are defined this way, they are called the Zadeh operators. So for the fuzzy variables x and y:
NOT x = (1 - truth(x)) x AND y = minimum(truth(x), truth(y)) x OR y = maximum(truth(x), truth(y))
There are also other operators, more linguistic in nature, called hedges that can be applied. These are generally adverbs such as "very", or "somewhat", which modify the meaning of a set using a mathematical formula.
Logical analysis
In mathematical logic, there are several formal systems of "fuzzy logic"; most of them belong among so-called t-norm fuzzy logics.
Propositional fuzzy logics
The most important propositional fuzzy logics are:
- Monoidal t-norm-based propositional fuzzy logic MTL is an axiomatization of logic where conjunction is defined by a left continuous t-norm, and implication is defined as the residuum of the t-norm. Its models correspond to MTL-algebras that are prelinear commutative bounded integral residuated lattices.
- Basic propositional fuzzy logic BL is an extension of MTL logic where conjunction is defined by a continuous t-norm, and implication is also defined as the residuum of the t-norm. Its models correspond to BL-algebras.
- Łukasiewicz fuzzy logic is the extension of basic fuzzy logic BL where standard conjunction is the Łukasiewicz t-norm. It has the axioms of basic fuzzy logic plus an axiom of double negation, and its models correspond to MV-algebras.
- Gödel fuzzy logic is the extension of basic fuzzy logic BL where conjunction is Gödel t-norm. It has the axioms of BL plus an axiom of idempotence of conjunction, and its models are called G-algebras.
- Product fuzzy logic is the extension of basic fuzzy logic BL where conjunction is product t-norm. It has the axioms of BL plus another axiom for cancellativity of conjunction, and its models are called product algebras.
- Fuzzy logic with evaluated syntax (sometimes also called Pavelka's logic), denoted by EVŁ, is a further generalization of mathematical fuzzy logic. While the above kinds of fuzzy logic have traditional syntax and many-valued semantics, in EVŁ is evaluated also syntax. This means that each formula has an evaluation. Axiomatization of EVŁ stems from Łukasziewicz fuzzy logic. A generalization of classical Gödel completeness theorem is provable in EVŁ.
Predicate fuzzy logics
These extend the above-mentioned fuzzy logics by adding universal and existential quantifiers in a manner similar to the way that predicate logic is created from propositional logic. The semantics of the universal (resp. existential) quantifier in t-norm fuzzy logics is the infimum (resp. supremum) of the truth degrees of the instances of the quantified subformula.
Decidability issues for fuzzy logic
The notions of a "decidable subset" and "recursively enumerable subset" are basic ones for classical mathematics and classical logic. Thus the question of a suitable extension of these concepts to fuzzy set theory arises. A first proposal in such a direction was made by E.S. Santos by the notions of fuzzy Turing machine, Markov normal fuzzy algorithm and fuzzy program (see Santos 1970). Successively, L. Biacino and G. Gerla argued that the proposed definitions are rather questionable and therefore they proposed the following ones. Denote by Ü the set of rational numbers in . Then a fuzzy subset s : S of a set S is recursively enumerable if a recursive map h : S×N Ü exists such that, for every x in S, the function h(x,n) is increasing with respect to n and s(x) = lim h(x,n). We say that s is decidable if both s and its complement –s are recursively enumerable. An extension of such a theory to the general case of the L-subsets is possible (see Gerla 2006). The proposed definitions are well related with fuzzy logic. Indeed, the following theorem holds true (provided that the deduction apparatus of the considered fuzzy logic satisfies some obvious effectiveness property).
Theorem. Any axiomatizable fuzzy theory is recursively enumerable. In particular, the fuzzy set of logically true formulas is recursively enumerable in spite of the fact that the crisp set of valid formulas is not recursively enumerable, in general. Moreover, any axiomatizable and complete theory is decidable.
It is an open question to give supports for a Church thesis for fuzzy mathematics the proposed notion of recursive enumerability for fuzzy subsets is the adequate one. To this aim, an extension of the notions of fuzzy grammar and fuzzy Turing machine should be necessary (see for example Wiedermann's paper). Another open question is to start from this notion to find an extension of Gödel's theorems to fuzzy logic.
Synthesis of fuzzy logic functions given in tabular form
It is known that any boolean logic function could be represented using a truth table mapping each set of variable values into set of values {0,1}. The task of synthesis of boolean logic function given in tabular form is one of basic tasks in traditional logic that is solved via disjunctive (conjunctive) perfect normal form.
Each fuzzy (continuous) logic function could be represented by a choice table containing all possible variants of comparing arguments and their negations. A choice table maps each variant into value of an argument or a negation of an argument. For instance, for two arguments a row of choice table contains a variant of comparing values x1, ¬x1, x2, ¬x2 and the corresponding function value
f( x 2 ≤ ¬x1 ≤ x1 ≤ ¬x2 ) = ¬x1
The task of synthesis of fuzzy logic function given in tabular form was solved in . New concepts of constituents of minimum and maximum were introduced. The sufficient and necessary conditions that a choice table defines a fuzzy logic function were derived.
Fuzzy databases
Once fuzzy relations are defined, it is possible to develop fuzzy relational databases. The first fuzzy relational database, FRDB, appeared in Maria Zemankova's dissertation. Later, some other models arose like the Buckles-Petry model, the Prade-Testemale Model, the Umano-Fukami model or the GEFRED model by J.M. Medina, M.A. Vila et al. In the context of fuzzy databases, some fuzzy querying languages have been defined, highlighting the SQLf by P. Bosc et al. and the FSQL by J. Galindo et al. These languages define some structures in order to include fuzzy aspects in the SQL statements, like fuzzy conditions, fuzzy comparators, fuzzy constants, fuzzy constraints, fuzzy thresholds, linguistic labels and so on.
Comparison to probability
Fuzzy logic and probability are different ways of expressing uncertainty. While both fuzzy logic and probability theory can be used to represent subjective belief, fuzzy set theory uses the concept of fuzzy set membership (i.e., how much a variable is in a set), and probability theory uses the concept of subjective probability (i.e., how probable do I think that a variable is in a set). While this distinction is mostly philosophical, the fuzzy-logic-derived possibility measure is inherently different from the probability measure, hence they are not directly equivalent. However, many statisticians are persuaded by the work of Bruno de Finetti that only one kind of mathematical uncertainty is needed and thus fuzzy logic is unnecessary. On the other hand, Bart Kosko argues that probability is a subtheory of fuzzy logic, as probability only handles one kind of uncertainty. He also claims to have proven a derivation of Bayes' theorem from the concept of fuzzy subsethood. Lotfi A. Zadeh argues that fuzzy logic is different in character from probability, and is not a replacement for it. He fuzzified probability to fuzzy probability and also generalized it to what is called possibility theory. (cf.) More generally, fuzzy logic is one of many different proposed extensions to classical logic, known as probabilistic logics, intended to deal with issues of uncertainty in classical logic, the inapplicability of probability theory in many domains, and the paradoxes of Dempster-Shafer theory.
See also
- Adaptive neuro fuzzy inference system (ANFIS)
- Artificial neural network
- Defuzzification
- Expert system
- False dilemma
- Fuzzy architectural spatial analysis
- Fuzzy classification
- Fuzzy complex
- Fuzzy concept
- Fuzzy Control Language
- Fuzzy control system
- Fuzzy electronics
- Fuzzy subalgebra
- FuzzyCLIPS
- High Performance Fuzzy Computing
- Interval finite element
- Machine learning
- Neuro-fuzzy
- Noise-based logic
- Rough set
- Sorites paradox
- Type-2 fuzzy sets and systems
References
- Novák, V., Perfilieva, I. and Močkoř, J. (1999) Mathematical principles of fuzzy logic Dodrecht: Kluwer Academic. ISBN 0-7923-8595-0
- "Fuzzy Logic". Stanford Encyclopedia of Philosophy. Stanford University. 2006-07-23. Retrieved 2008-09-30.
- Zadeh, L.A. (1965). "Fuzzy sets", Information and Control 8 (3): 338–353.
- Francis Jeffry Pelletier, Review of Metamathematics of fuzzy logics in The Bulletin of Symbolic Logic, Vol. 6, No.3, (Sep. 2000), 342-346, JSTOR 421060
- Zadeh, L. A. et al. 1996 Fuzzy Sets, Fuzzy Logic, Fuzzy Systems, World Scientific Press, ISBN 981-02-2421-4
- Kosko, B. "Fuzzy Thinking: The New Science of Fuzzy Logic". Hyperion.
- Zaitsev D.A., Sarbei V.G., Sleptsov A.I., Synthesis of continuous-valued logic functions defined in tabular form, Cybernetics and Systems Analysis, Volume 34, Number 2 (1998), 190-195.
- Novák, V. "Are fuzzy sets a reasonable tool for modeling vague phenomena?", Fuzzy Sets and Systems 156 (2005) 341—348.
Bibliography
- Arabacioglu, B. C. (2010). "Using fuzzy inference system for architectural space analysis". Applied Soft Computing. 10 (3): 926–937. doi:10.1016/j.asoc.2009.10.011.
- Biacino, L. (2002). "Fuzzy logic, continuity and effectiveness". Archive for Mathematical Logic. 41 (7): 643–667. doi:10.1007/s001530100128. ISSN 0933-5846.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Cox, Earl (1994). The fuzzy systems handbook: a practitioner's guide to building, using, maintaining fuzzy systems. Boston: AP Professional. ISBN 0-12-194270-8.
- Gerla, Giangiacomo (2006). "Effectiveness and Multivalued Logics". Journal of Symbolic Logic. 71 (1): 137–162. doi:10.2178/jsl/1140641166. ISSN 0022-4812.
{{cite journal}}
: Cite has empty unknown parameter:|coauthors=
(help) - Hájek, Petr (1998). Metamathematics of fuzzy logic. Dordrecht: Kluwer. ISBN 0-7923-5238-6.
- Hájek, Petr (1995). "Fuzzy logic and arithmetical hierarchy". Fuzzy Sets and Systems. 3 (8): 359–363. doi:10.1016/0165-0114(94)00299-M. ISSN 0165-0114.
{{cite journal}}
: Cite has empty unknown parameter:|coauthors=
(help) - Halpern, Joseph Y. (2003). Reasoning about uncertainty. Cambridge, Mass: MIT Press. ISBN 0-262-08320-5.
- Höppner, Frank (1999). Fuzzy cluster analysis: methods for classification, data analysis and image recognition. New York: John Wiley. ISBN 0-471-98864-2.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Ibrahim, Ahmad M. (1997). Introduction to Applied Fuzzy Electronics. Englewood Cliffs, N.J: Prentice Hall. ISBN 0-13-206400-6.
{{cite book}}
: Cite has empty unknown parameter:|coauthors=
(help) - Klir, George J. (1988). Fuzzy sets, uncertainty, and information. Englewood Cliffs, N.J: Prentice Hall. ISBN 0-13-345984-5.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Klir, George J. (1997). Fuzzy set theory: foundations and applications. Englewood Cliffs, NJ: Prentice Hall. ISBN 0-13-341058-7.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Klir, George J. (1995). Fuzzy sets and fuzzy logic: theory and applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Kosko, Bart (1993). Fuzzy thinking: the new science of fuzzy logic. New York: Hyperion. ISBN 0-7868-8021-X.
- Kosko, Bart; Isaka, Satoru (1993). "Fuzzy Logic". Scientific American. 269 (1): 76–81. doi:10.1038/scientificamerican0793-76.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Lohani, A.K. (2006). "Takagi–Sugeno fuzzy inference system for modeling stage–discharge relationship". Journal of Hydrology. 331 (1): 146–160. doi:10.1016/j.jhydrol.2006.05.007.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Lohani, A.K. (2007). "Deriving stage–discharge–sediment concentration relationships using fuzzy logic". Hydrological Sciences Journal. 52 (4): 793–807. doi:10.1623/hysj.52.4.793.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Lohani, A.K. (2011). "Comparative study of neural network, fuzzy logic and linear transfer function techniques in daily rainfall‐runoff modelling under different input domains". Hydrological Processes. 25 (2): 175–193. doi:10.1002/hyp.7831.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Lohani, A.K. (2012). "Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques". Journal of Hydrology. 442–443 (6): 23–35. doi:10.1016/j.jhydrol.2012.03.031.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Template:Cite article
- Montagna, F. (2001). "Three complexity problems in quantified fuzzy logic". Studia Logica. 68 (1): 143–152. doi:10.1023/A:1011958407631. ISSN 0039-3215.
{{cite journal}}
: Cite has empty unknown parameter:|coauthors=
(help) - Mundici, Daniele (1999). Algebraic foundations of many-valued reasoning. Dodrecht: Kluwer Academic. ISBN 0-7923-6009-5.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Novák, Vilém (1989). Fuzzy Sets and Their Applications. Bristol: Adam Hilger. ISBN 0-85274-583-4.
- Novák, Vilém (2005). "On fuzzy type theory". Fuzzy Sets and Systems. 149 (2): 235–273. doi:10.1016/j.fss.2004.03.027.
- Novák, Vilém (1999). Mathematical principles of fuzzy logic. Dordrecht: Kluwer Academic. ISBN 0-7923-8595-0.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Onses, Richard (1996). Second Order Experton: A new Tool for Changing Paradigms in Country Risk Calculation. ISBN 84-7719-558-7.
- Onses, Richard (1994). Détermination de l´incertitude inhérente aux investissements en Amérique Latine sur la base de la théorie des sous ensembles flous. Barcelona. ISBN 84-475-0881-1.
{{cite book}}
: CS1 maint: location missing publisher (link) - Passino, Kevin M. (1998). Fuzzy control. Boston: Addison-Wesley. ISBN 0-201-18074-X.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Pedrycz, Witold (2007). Fuzzy systems engineering: Toward Human-Centerd Computing. Hoboken: Wiley-Interscience. ISBN 978-0-471-78857-7.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Pu, Pao Ming; Liu, Ying Ming (1980). "Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence". Journal of Mathematical Analysis and Applications. 76 (2): 571–599. doi:10.1016/0022-247X(80)90048-7. ISSN 0022-247X.
- Sahoo, Bhabagrahi (2006). "Fuzzy multiobjective and linear programming based management models for optimal land-water-crop system planning". Water resources management,Springer Netherlands. 20(6) (1): 931–948.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Santos, Eugene S. (1970). "Fuzzy Algorithms". Information and Control. 17 (4): 326–339. doi:10.1016/S0019-9958(70)80032-8.
{{cite journal}}
: Cite has empty unknown parameter:|coauthors=
(help) - Scarpellini, Bruno (1962). "Die Nichaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von Łukasiewicz". Journal of Symbolic Logic. 27 (2). Association for Symbolic Logic: 159–170. doi:10.2307/2964111. ISSN 0022-4812. JSTOR 2964111.
{{cite journal}}
: Cite has empty unknown parameter:|coauthors=
(help) - Steeb, Willi-Hans (2008). The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic with C++, Java and SymbolicC++ Programs: 4edition. World Scientific. ISBN 981-281-852-9.
- Tsitolovsky, Lev (2008). Neural Cell Behavior and Fuzzy Logic. Springer. ISBN ISBN 978-0-387-09542-4.
{{cite book}}
: Check|isbn=
value: invalid character (help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Wiedermann, J. (2004). "Characterizing the super-Turing computing power and efficiency of classical fuzzy Turing machines". Theor. Comput. Sci. 317 (1–3): 61–69. doi:10.1016/j.tcs.2003.12.004.
{{cite journal}}
: Cite has empty unknown parameter:|coauthors=
(help) - Yager, Ronald R. (1994). Essentials of fuzzy modeling and control. New York: Wiley. ISBN 0-471-01761-2.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Van Pelt, Miles (2008). Fuzzy Logic Applied to Daily Life. Seattle, WA: No No No No Press. ISBN 0-252-16341-9.
- Von Altrock, Constantin (1995). Fuzzy logic and NeuroFuzzy applications explained. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-368465-2.
- Wilkinson, R.H. (1963). "A method of generating functions of several variables using analog diode logic". IEEE Transactions on Electronic Computers. 12 (2): 112–129. doi:10.1109/PGEC.1963.263419.
{{cite journal}}
: Cite has empty unknown parameter:|coauthors=
(help) - Zadeh, L.A. (1968). "Fuzzy algorithms". Information and Control. 12 (2): 94–102. doi:10.1016/S0019-9958(68)90211-8. ISSN 0019-9958.
- Zadeh, L.A. (1965). "Fuzzy sets". Information and Control. 8 (3): 338–353. doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958.
{{cite journal}}
: Cite has empty unknown parameter:|coauthors=
(help) - Zemankova-Leech, M. (1983). "Fuzzy Relational Data Bases". Ph. D. Dissertation. Florida State University.
{{cite journal}}
: Cite journal requires|journal=
(help) - Zimmermann, H. (2001). Fuzzy set theory and its applications. Boston: Kluwer Academic Publishers. ISBN 0-7923-7435-5.
External links
- Formal fuzzy logic - article at Citizendium
- Fuzzy Logic - article at Scholarpedia
- Modeling With Words - article at Scholarpedia
- Fuzzy logic - article at Stanford Encyclopedia of Philosophy
- Fuzzy Math - Beginner level introduction to Fuzzy Logic
Logic | |||||
---|---|---|---|---|---|
Major fields |
| ||||
Foundations | |||||
Lists |
| ||||