Misplaced Pages

Eusociality: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 15:47, 22 January 2014 edit191.106.228.1 (talk) HistoryTag: Possible vandalism← Previous edit Latest revision as of 18:59, 4 November 2024 edit undoChiswick Chap (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, New page reviewers, Pending changes reviewers, Rollbackers297,681 editsm Phylogenetic distribution: em key 
(621 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{short description|Highest level of animal sociality a species can attain}}
{{pp-move-indef}}
{{Ethology}} {{good article}}
], is a condition of eusociality.]]


'''Eusociality''' (] ''eu'': "good/real" + "social"), the highest level of organization of ], is defined by the following characteristics: cooperative ] care (including brood care of offspring from other individuals), overlapping generations within a colony of adults, and a division of labor into reproductive and non-reproductive groups.<ref name=Wilson_Insect_Societies>{{cite book|last=Wilson|first=Edward O.|title=The Insect Societies|year=1971|publisher=Belknap Press of Harvard University Press|location=Cambridge. Massachusetts}}</ref><ref name=Wilson2005>{{cite journal|last=Wilson|first=Edward O.|coauthors=Bert Hölldobler|title=Eusociality: Origin and Consequences|journal=PNAS|date=20 September 2005|volume=102|issue=38|pages=13367–13371}}</ref> The division of labor creates specialized behavioral groups within an animal society which are sometimes called ]. Eusociality is distinguished from all other social systems because individuals of at least one caste lose the ability to perform at least one behavior characteristic of individuals in another caste.<ref name=Wilson2005 /><ref name=Crespi1995>{{cite journal|last=Crespi|first=Bernard J.|coauthors=Douglas Yanega|title=The Definition of Eusociality|journal=Behav Ecol|year=1995|volume=6|pages=109–115}}</ref> '''Eusociality''' (] εὖ ''eu'' "good" and ]) is the highest level of organization of ].<!--lead summarizes cited text in body of article--> It is defined by the following characteristics: cooperative ] care (including care of ] from other individuals), overlapping generations within a colony of ], and a division of labor into ] and non-reproductive groups. The division of labor creates specialized behavioral groups within an animal society, sometimes called castes. Eusociality is distinguished from all other social systems because individuals of at least one caste usually lose the ability to perform behaviors characteristic of individuals in another caste. Eusocial colonies can be viewed as ]s.


Eusociality is mostly observed and studied in ] (ants, bees, and wasps) and ] (termites).<ref name=Wilson_Insect_Societies /> For example, a colony has caste differences; a queen and king take the roles as the sole reproducers and the soldiers and workers work together to create a living situation favorable for the brood. In addition to Hymenoptera and Isoptera, there are two known eusocial vertebrates from the order ], which includes the ] and the ]. Most of the individuals cooperatively care for the brood of a single reproductive female (the queen) to which they are most likely related.<ref>{{cite journal|last=O' Riain|first=M.|coauthors=et al|title=A Dispersive Morph in the Naked Mole-Rat|journal=Nature|year=1996|volume=380|pages=619–621}}</ref> Eusociality has evolved among the ]s, ]s, ] and ]s. It is most widespread in the ] (]s, ]s, and ]s) and in Blattodea (]s). A colony has caste differences: queens and ] ] take the roles of the sole reproducers, while soldiers and workers work together to create and maintain a living situation favorable for the brood. Queens produce multiple queen pheromones to create and maintain the eusocial state in their colonies; they may also eat eggs laid by other females or exert dominance by fighting. There are two eusocial ]s: the ] and the ]. Some ]s, such as '']'', are eusocial. ] and others have claimed that ]s have evolved a weak form of eusociality. It has been suggested that the colonial and epiphytic ], too, may make use of a primitively eusocial division of labor.

Several other levels of animal sociality have been distinguished. These include ] (solitary but social), ] and ] (including communal, ], and semisocial).<ref name=Wilson_Insect_Societies />


== History == == History ==
que onda contigo me caes mal
]]]
The term "eusocial" was introduced in 1966 by Suzanne Batra<ref name=Crespi1995 /><ref name=Batra1968>{{cite journal|last=Batra|first=Suzanne W. T.|title=Behavior of Some Social and Solitary Halictine Bees Within Their Nests: A Comparative Study (Hymenoptera: Halictidae)|journal=Journal of the Kansas Entomological Society|date=Jan 1968|volume=41|issue=1|pages=120–133}}</ref> who used it to describe nesting behavior in Halictine bees. Batra observed the cooperative behavior of the bees, males and females alike, as they took responsibility for at least one duty (i.e. burrowing, cell construction, ]) within the colony. The cooperativeness was essential as the activity of one labor division greatly influenced the activity of another. For example, the size of pollen balls, a source of food, depended on when the egg-laying females oviposited. If the provisioning by pollen collectors was incomplete by the time the egg-laying female occupied a cell and oviposited, the size of the pollen balls would be small, leading to small offspring.<ref name=Batra1968 />


] introduced the term "eusocial"<ref name=Crespi1995/> after studying nesting in ] bees including '']'',<ref name="Batra 1966"/> pictured. ]]
In 1969, ]<ref>{{cite journal|last=Michener|first=Charles D.|title=Comparative Social Behavior of Bees|journal=Annu. Rev. Entomol.|year=1969|volume=14|pages=299–342}}</ref> further expanded Batra’s classification with his comparative study of social behavior in bees. He observed multiple species of bees (]) in order to investigate the different levels of animal sociality, all of which are different stages that a colony may pass through. Eusociality, which is the highest level of animal sociality a species can attain, specifically had three characteristics that distinguished it from the other levels:

The term "eusocial" was introduced in 1966 by ], who used it to describe nesting behavior in ] bees, on a scale of subsocial/solitary, colonial/communal, semisocial, and eusocial, where a colony is started by a single individual.<ref name=Crespi1995>{{cite journal |last1=Crespi |first1=Bernard J. |author-link1=Bernard Crespi |first2=Douglas |last2=Yanega |title=The Definition of Eusociality |journal=Behavioral Ecology |year=1995 |volume=6 |pages=109–115 |doi=10.1093/beheco/6.1.109}}</ref><ref name="Batra 1966">{{cite journal |last1=Batra |first1=Suzanne W. T. |author1-link=Suzanne Batra |title=Nests and Social Behavior of Halictine bees of India (Hymenoptera: Halictidae) |journal=The Indian Journal of Entomology |date=1 September 1966 |volume=28 |issue=3 |pages=375–393 |url=https://www.researchgate.net/publication/332895033}}</ref> Batra observed the cooperative behavior of the bees, males and females alike, as they took responsibility for at least one duty (i.e., burrowing, cell construction, ]) within the colony. The cooperativeness was essential as the activity of one labor division greatly influenced the activity of another. Eusocial colonies can be viewed as ]s, with individual castes being analogous to different ] or ]s in a ]; castes fulfill a specific role that contributes to the functioning and survival of the whole colony, while being incapable of independent survival outside the colony.<ref>{{Cite journal |last1=Opachaloemphan |first1=Comzit |last2=Yan |first2=Hua |last3=Leibholz |first3=Alexandra |last4=Desplan |first4=Claude |last5=Reinberg |first5=Danny |date=2018-11-23 |title=Recent Advances in Behavioral (Epi)Genetics in Eusocial Insects |journal=] |volume=52 |issue=1 |pages=489–510 |doi=10.1146/annurev-genet-120116-024456 |issn=0066-4197 |pmc=6445553 |pmid=30208294}}</ref>

In 1969, ]<ref name="Michener 1969 299–342">{{cite journal |last=Michener |first=Charles D. |title=Comparative Social Behavior of Bees |journal=] |year=1969 |volume=14 |pages=299–342 |doi=10.1146/annurev.en.14.010169.001503}}</ref> further expanded Batra's classification with his comparative study of social behavior in bees. He observed multiple species of bees (]) in order to investigate the different levels of animal sociality, all of which are different stages that a colony may pass through. Eusociality, which is the highest level of animal sociality a species can attain, specifically had three characteristics that distinguished it from the other levels:<ref name="Crespi1995" />


# “Egg-layers and worker-like individuals among adult females" (division of labor) # Egg-layers and worker-like individuals among adult females (division of labor)
# The overlap of generations (mother and adult offspring) # The overlap of generations (mother and adult offspring)
# Cooperative work on the cells of the bees' honeycomb<ref name=Crespi1995 /> # Cooperative work on the cells of the bees' honeycomb


], here collaborating to pull nest leaves together, can be considered eusocial, as they have a permanent division of labor.]]
Up to this point, “eusocial” was a term used to describe some of the cooperative living and brood caring carried out by bees. ] then extended the term to social insects aside from bees, such as ants, wasps, and termites. Originally, it was defined to include organisms (only invertebrates) that had the following three features:<ref name=Crespi1995 /><ref>{{cite journal|last=Gadagkar|first=Raghavendra|title=And now... eusocial thrips!|journal=Current Science|year=1993|volume=64|issue=4|pages=215–216}}</ref>

] extended the terminology to include other social insects, such as ants, wasps, and termites. Originally, it was defined to include organisms (only invertebrates) that had the following three features:<ref name=Crespi1995/><ref name="Gadagkar 1993 215–216">{{cite journal |last=Gadagkar |first=Raghavendra |title=And now... eusocial thrips! |journal=Current Science |year=1993 |volume=64 |issue=4 |pages=215–216}}</ref><ref name=Wilson_Insect_Societies>{{cite book |last=Wilson |first=Edward O. |author-link=Edward O. Wilson |chapter=3 The Social Wasps; 4 The Ants; 6 The Termites |title=The Insect Societies |url=https://archive.org/details/insectsocieties00edwa |url-access=registration |year=1971 |publisher=Belknap Press of ] |location=Cambridge, Massachusetts |isbn=9780674454903}}</ref><ref name="Wilson Hölldobler 2005">{{cite journal |last1=Wilson |first1=Edward O. |author1-link=Edward O. Wilson |first2=Bert |last2=Hölldobler |title=Eusociality: Origin and Consequences |journal=] |date=20 September 2005 |volume=102 |issue=38 |pages=13367–13371 |doi=10.1073/pnas.0505858102 |pmid=16157878 |pmc=1224642 |bibcode=2005PNAS..10213367W |doi-access=free}}</ref>


# Reproductive division of labor (with or without sterile castes) # Reproductive division of labor (with or without sterile castes)
Line 25: Line 27:
# Cooperative care of young # Cooperative care of young


Eusociality was then discovered in a group of ], the mole-rats. Further research distinguished another possibly important criterion for eusociality, "the point of no return". This is characterized by having individuals fixed into one behavioral group, usually before reproductive maturity. This prevents them from transitioning between behavioral groups, and creates a society with individuals truly dependent on each other for survival and reproductive success. For many insects, this irreversibility has changed the anatomy of the worker caste, which is sterile and provides support for the reproductive caste.<ref name=Crespi1995/><ref name="Wilson Hölldobler 2005"/>
As eusociality became a recognized widespread phenomenon, however, it was also discovered in ], specifically Rodentia.


== Diversity ==
Further research also distinguished another possible important criterion for eusociality, known as “the point of no return”. This phenomenon is characterized by eusocial individuals that become fixed into one behavioral group, which usually occurs before reproductive maturity. This prevents them from transitioning between behavioral groups and creates an animal society that is truly dependent on each other for survival and reproductive success. For many insects, this irreversibility has changed the anatomy of the worker caste, which is sterile and provides support for the reproductive caste.<ref name=Wilson2005 /><ref name=Crespi1995 />


Most eusocial societies exist in ]s, while a few are found in ]s. Some ]s may exhibit a primitive form of eusocial behavior.<ref name="NYT Ferns 2021">{{cite news |last=Preston |first=Elizabeth |title=These Plants Act Like Bees in a Hive |url=https://www.nytimes.com/2021/07/02/science/ferns-social.html |access-date=7 July 2021 |work=] |date=2 July 2021}}</ref><ref name="Burns Hutton Shepherd 2021">{{cite journal |last1=Burns |first1=K. C. |last2=Hutton |first2=Ian |last3=Shepherd |first3=Lara |title=Primitive eusociality in a land plant? |journal=] |date=14 May 2021 |volume=102 |issue=9 |pages=e03373 |doi=10.1002/ecy.3373 |issn=0012-9658 |pmid=33988245 |bibcode=2021Ecol..102E3373B |s2cid=234496454 |url=https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.3373 |access-date=7 July 2021}}</ref>
== Examples ==
Most eusocial societies exist in ]s, while few are found in ]s.


=== In insects === === In insects ===
{{See also|Sexual selection in social insects}}
]]]
The order ] contains the largest group of eusocial insects, including ]s, ]s, and ]s{{spaced ndash}}those with reproductive “queens” and more or less ] “workers” and/or “soldiers” that perform specialized tasks.<ref name=Holldobler1990>{{cite book|last=Holldobler|first=B.|title=The Ants|year=1990|publisher=Belknap Press of Harvard University|location=Cambridge, MA}}</ref> While only a small percentage of species in bees (family ]) and wasps (] and ]) are eusocial, nearly all species of ants (]) are eusocial. '']'' and '']'' are wasps that demonstrate eusocial behavior. An ] is an example of ant that shows eusocial behavior. Other examples of organisms that use the eusocial colony structure are '']'', an army ant species, and ]. Eusociality in these families of organisms is likely managed by a set of ] that alter the behavior of specific castes in the colony. These pheromones may act across different species, as have been observed in '']'' (black dwarf honey bee), where worker bees were under the influence of queen pheromone from the related '']'' (red dwarf honey bee).<ref>Wongvilas, S.; S. Deowanish, J. Lim, V. R. D. Xie, O. W. Griffith, B. P. Oldroyd (August 2010). "Interspecific and conspecific colony mergers in the dwarf honey bees Apis andreniformis and A. florea". Insectes Sociaux 57 (3): 251–255. doi:10.1007/s00040-010-0080-7.</ref> Such a phenomenon of reproductive specialization generally involves the production of sterile members of the species, which carry out specialized tasks to care for the reproductive members. It can manifest in the appearance of individuals within a group whose behavior or morphology is modified for group defense, including self-sacrificing behavior ("]"). An excellent example of a species whose sterile caste displays this altruistic behavior is '']'', or one of the species of honey ant. Select sterile workers fill their abdomens with liquid food until they become immobile and hang from the ceilings of the underground nests, acting as food storage for the rest of the colony.<ref name=Conway1986>Conway, John R. "The Biology of Honey Ants." ''The American Biology Teacher''. , Vol. 48, No. 6 (Sep., 1986), pp. 335–343.</ref>


{{See also|Sexual selection in social insects|Identity in social insects}}
]s (order ]) make up another large portion of highly advanced eusocial animals. The colony is differentiated into various castes: the queen and king are the sole reproducing individuals; workers forage and maintain food and resources; and soldiers defend the colony against ant attacks. The latter two castes, which are sterile and perform highly specialized, complex social behaviors, are derived from different stages of pluripotent larvae produced by the reproductive caste.<ref name=Thorne1997>{{cite journal|last=Thorne|first=B. L.|title=Evolution of eusociality in termites|journal=Annual Review of Ecology, Evolution and Systematics|year=1997|volume=28|pages=27–54}}</ref> Some soldiers have jaws so enlarged (specialized for defense and attack) that they are unable to feed for themselves and must be fed by workers.<ref name=Adams1987>{{cite journal|last=Adams|first=E.S.|title=Territory size and population limits in mangrove termites|journal=Journal of Animal Ecology|year=1987|volume=56|pages=1069–1081}}</ref>


Eusociality has evolved multiple times in different insect orders, including hymenopterans,<ref>{{cite journal |last1=Danforth |first1=Bryan N. |title=Evolution of sociality in a primitively eusocial lineage of bees |journal=PNAS |date=December 26, 2001 |volume=99 |issue=1 |pages=286–290 |doi=10.1073/pnas.012387999 |pmid=11782550 |pmc=117553 |doi-access=free }}</ref> termites,<ref name=Thorne1997/> thrips,<ref name=Stern1994/> aphids,<ref name=Stern1994/> and beetles.<ref name=Kent1992/>
'']'', a species of ] native to Australia, is the first beetle (order ]) to be recognized as eusocial.<ref name="bee">{{cite web|url=http://www.newscientist.com/article/mg13418203.100-science-the-australian-beetle-that-behaves-like-a-bee.html |title=Science: The Australian beetle that behaves like a bee |publisher=New Scientist |date=1992-05-09 |accessdate=2010-10-31}}</ref><ref name=Kent1992>{{cite journal |author=D. S. Kent & J. A. Simpson |year=1992 |title=Eusociality in the beetle ''Austroplatypus incompertus'' (Coleoptera: Curculionidae) |journal=] |volume=79 |pages=86–87 |doi=10.1007/BF01131810}}</ref> Also known as the “ambrosia beetle,” this species forms colonies in which a single female is fertilized and protected by many unfertilized females which also serve as workers excavating tunnels in trees. The ambrosia beetle also participates in cooperative brood care, in which individuals care for juveniles that are not their own.<ref name=Kent1992>{{cite journal|last=Kent|first=D.S.|coauthors=Simpson, A.J.|journal=Naturwissenschaften|year=1992|volume=79|pages=86–87}}</ref>


==== In hymenoptera ====
Recently, some species of gall-making ]s (order ]), including the gall-forming aphid, '']'', and ] (order ]), small insects that live in and feed on plant tissue, were also found to be eusocial.<ref name=Stern1994>{{cite journal|last=Stern|first=D.L.|title=A phylogenetic analysis of soldier evolution in the aphid family Hormaphididae|journal=Proceedings of the Royal Society|year=1994|volume=256|pages=203–209}}</ref><ref name=Aoki2005>{{cite journal|last=Aoki|first=S.|coauthors=Imai, M.|title=Factors affecting the proportion of sterile soldiers in growing aphid colonies|journal=Population Ecology|year=2005|volume=47|pages=127–136}}</ref> These species have very high relatedness among individuals due to their partially ] (sterile soldier castes being clones of the reproducing female), but the gall-inhabiting behavior gives these species a defensible resource that sets them apart from related species with similar genetics. They produce soldier castes capable of fortress defense and protection of their colony against both predators and competitors. In these groups, therefore, high relatedness alone does not lead to the evolution of social behavior, but requires that groups occur in a restricted, shared area.<ref>{{cite journal | doi = 10.1038/359724a0 | author = Crespi B. J. | year = 1992 | title = Eusociality in Australian gall thrips | url = | journal = Nature | volume = 359 | issue = 6397| pages = 724–726 }}</ref> These species have morphologically distinct soldier castes that defend against ]s (parasitism by theft) and are able to reproduce ] (without fertilization).<ref name=Stern1996>{{cite journal|last=Stern|first=D.|coauthors=Foster, W.|title=The evolution of soldiers in aphids|journal=Biological Reviews|year=1996|volume=71|pages=27–79}}</ref>

]'' ants. The young queens are black, winged, and much larger than the wingless workers.]]

The order ] contains the largest group of eusocial insects, including ]s, ]s, and ]s—divided into castes: reproductive ], ], more or less ] workers, and sometimes also soldiers that perform specialized tasks.<ref name="Hölldobler 1990">{{cite book |last=Hölldobler |first=B. |chapter=8 Caste and Division of Labor |title=The Ants |year=1990 |publisher=] |location=Cambridge, Massachusetts |pages=298–318}}</ref> In the well-studied social wasp '']'',<ref>{{cite journal |last=Cervo |first=Rita |title=Polistes wasps and their social parasites: an overview |journal=Annales Zoologici Fennici |date=2006 |volume=43 |issue=5/6 |pages=531–549 |jstor=23736760}}</ref> dominant females perform tasks such as building new cells and ovipositing, while subordinate females tend to perform tasks like feeding the larvae and foraging. The task differentiation between castes can be seen in the fact that subordinates complete 81.4% of the total foraging activity, while dominants only complete 18.6% of the total foraging.<ref>{{cite journal |last1=Zara |first1=Fernando |last2=Balestieri |first2=Jose |year=2000 |title=Behavioural Catalogue of Polistes versicolor Olivier (Vespidae: Polistinae) Post-emergent Colonies |journal=Naturalia |volume=25 |pages=301–319}}</ref> Eusocial species with a sterile caste are sometimes called hypersocial.<ref name= "Richards 2019">{{cite journal |last=Richards |first=Miriam H. |title=Social trait definitions influence evolutionary inferences: a phylogenetic approach to improving social terminology for bees |journal=Current Opinion in Insect Science |year=2019 |volume=34 |pages=97–104 |doi=10.1016/j.cois.2019.04.006 |pmid=31247426 |bibcode=2019COIS...34...97R |s2cid=151303496}}</ref>

While only a moderate percentage of species in bees (families ] and ]) and wasps (] and ]) are eusocial, nearly all species of ants (]) are eusocial.<ref>{{cite journal |last1=Peters |first1=Ralph S. |last2=Krogmann |first2=Lars |last3=Mayer |first3=Christoph |last4=Donath |first4=Alexander |last5=Gunkel|first5=Simon |last6=Meusemann |first6=Karen |last7=Kozlov |first7=Alexey |last8=Podsiadlowski |first8=Lars |last9=Petersen |first9=Malte |display-authors=5 |date=April 2017 |title=Evolutionary History of the Hymenoptera |journal=] |volume=27 |issue=7 |pages=1013–1018 |doi=10.1016/j.cub.2017.01.027 |pmid=28343967 |doi-access=free|bibcode=2017CBio...27.1013P |hdl=2434/801122 |hdl-access=free }}</ref> Some major lineages of wasps are mostly or entirely eusocial, including the subfamilies ] and ]. The corbiculate bees (subfamily Apinae of family ]) contain four tribes of varying degrees of sociality: the highly eusocial ] (honey bees) and ] (stingless bees), primitively eusocial ] (bumble bees), and the mostly solitary or weakly social ] (orchid bees).<!--this complex list-sentence would make a good table, with photo of each one--><ref>{{cite journal |last1=Cardinal |first1=Sophie |last2=Danforth |first2=Bryan N. |title=The antiquity and evolutionary history of social behavior in bees |journal=] |year=2011 |volume=6 |issue=6 |pages=e21086 |doi=10.1371/journal.pone.0021086 |pmid=21695157 |pmc=3113908 |bibcode=2011PLoSO...621086C |doi-access=free}}</ref> Eusociality in these families is sometimes managed by a set of ] that alter the behavior of specific castes in the colony. These pheromones may act across different species, as observed in '']'' (black dwarf honey bee), where worker bees responded to queen pheromone from the related '']'' (red dwarf honey bee).<ref name="Interspecific and conspecific colon">{{cite journal |last1=Wongvilas |first1=S. |last2=Deowanish |first2=S. |last3=Lim |first3=J. |last4=Xie |first4=V. R. D. |last5=Griffith |first5=O. W. |last6=Oldroyd |first6=B. P. |year=2010 |title=Interspecific and conspecific colony mergers in the dwarf honey bees ''Apis andreniformis'' and ''A. florea'' |journal=Insectes Sociaux |volume=57 |issue=3 |pages=251–255 |doi=10.1007/s00040-010-0080-7 |s2cid=8657703}}</ref> Pheromones are sometimes used in these castes to assist with foraging. Workers of the Australian stingless bee '']'', for instance, mark food sources with a pheromone, helping their nest mates to find the food.<ref name=Bartareau1996>{{cite journal |last=Bartareau |first=T. |year=1996 |title=Foraging Behaviour of Trigona Carbonaria (Hymenoptera: Apidae) at Multiple-Choice Feeding Stations |journal=Australian Journal of Zoology |volume=44 |issue=2 |doi=10.1071/zo9960143 |pages=143}}</ref>

]'' honeypot ants, showing the repletes or plerergates, their abdomens swollen to store honey (top), with ordinary workers (bottom)]]

Reproductive specialization generally involves the production of sterile members of the species, which carry out specialized tasks to care for the reproductive members. Individuals may have behavior and morphology modified for group defense, including ]. For example, members of the sterile caste of the ]s such as '']'' fill their abdomens with liquid food until they become immobile and hang from the ceilings of the underground nests, acting as food storage for the rest of the colony.<ref name="Conway1986">{{cite journal |last=Conway |first=John R. |title=The Biology of Honey Ants |journal=The American Biology Teacher |volume=48 |number=6 |date=September 1986 |pages=335–343 |doi=10.2307/4448321 |jstor=4448321 }}</ref> Not all social insects have distinct morphological differences between castes. For example, in the Neotropical social wasp '']'', caste ranks are determined by social displays in the developing brood.<ref>{{cite journal |title=The Nature and Evolution of Swarming In Tropical Social Wasps (Vespidae, Polistinae, Polybini) |last=West-Eberhard |first=M. J. |date=1982 |journal=Smithsonian Tropical Research Institute}}</ref> These castes are sometimes further specialized in their behavior based on age, as in '']'' workers. Between approximately 0–40 days old, the workers perform tasks within the nest such as provisioning cell broods, colony cleaning, and nectar reception and dehydration. Once older than 40 days, ''S. postica'' workers move outside the nest for colony defense and foraging.<ref name="Drones 435-447">{{cite journal |last1=van Veen |first1=J. W. |last2=Sommeijer |first2=M. J. |last3=Meeuwsen |first3=F. |title=Behaviour of drones in Melipona (Apidae, Meliponinae) |journal=Insectes Sociaux |date=November 1997 |volume=44 |issue=4 |pages=435–447 |doi=10.1007/s000400050063 |s2cid=36563930}}</ref>

In '']'', a halictid bee from Central America, nests may be headed by more than one female; such nests have more cells, and the number of active cells per female is correlated with the number of females in the nest, implying that having more females leads to more efficient building and provisioning of cells.<ref name= "Wcislo2">{{cite journal |last1=Wcislo |first1=W. T. |last2=Wille |first2=A. |last3=Orozco |first3=E. |date=1993 |title=Nesting biology of tropical solitary and social sweat bees, Lasioglossum (Dialictus) figueresi Wcislo and L. (D.) aeneiventre (Friese) (Hymenoptera: Halictidae) |volume=40 |pages=21–40 |doi=10.1007/BF01338830 |journal=Insectes Sociaux |s2cid=6867760}}</ref> In similar species with only one queen, such as '']'' in Europe, the degree of eusociality depends on the clime in which the species is found.<ref>{{cite journal |title=Evidence for geographic variation in colony social organization in an obligately social sweat bee, Lasioglossum malachurum Kirby (Hymenoptera; Halictidae) |journal=] |pages=1259–1266 |volume=78 |issue=7 |doi=10.1139/z00-064 |first=Miriam H. |last=Richards |year=2000}}</ref>

==== In termites ====

]s live in large nests, with queen, king, soldier (red heads), and worker (pale heads) castes.]]

]s (order ], infraorder ]) make up another large portion of highly advanced eusocial animals. The colony is differentiated into various castes: the queen and king are the sole reproducing individuals; workers forage and maintain food and resources;<ref>Costa-Leonardo AM, Haifig I. (2014). . In: Biocommunication of Animals. Dortrecht, Springer, 161–190.</ref> and soldiers defend the colony against ant attacks. The latter two castes, which are sterile and perform highly specialized, complex social behaviors, are derived from different stages of ] larvae produced by the reproductive caste.<ref name=Thorne1997>{{cite journal |last=Thorne |first=B. L. |title=Evolution of eusociality in termites |journal=Annual Review of Ecology, Evolution, and Systematics |year=1997 |volume=28 |issue=11 |pages=27–54 |doi=10.1146/annurev.ecolsys.28.1.27 |pmc=349550}}</ref> Some soldiers have jaws so enlarged (specialized for defense and attack) that they are unable to feed themselves and must be fed by workers.<ref name=Adams1987>{{cite journal |last=Adams |first=E. S. |title=Territory size and population limits in mangrove termites |journal=] |year=1987 |volume=56 |issue=3 |pages=1069–1081 |doi=10.2307/4967 |jstor=4967|bibcode=1987JAnEc..56.1069A }}</ref>

==== In beetles ====

'']'' is a species of ] native to Australia, and is the first beetle (order ]) to be recognized as eusocial.<ref name="bee">{{cite web |url=https://www.newscientist.com/article/mg13418203.100-science-the-australian-beetle-that-behaves-like-a-bee.html |title=Science: The Australian beetle that behaves like a bee |publisher=] |date=9 May 1992 |access-date=2010-10-31}}</ref><ref name=Kent1992>{{cite journal |first1=D. S. |last1=Kent |first2=J. A. |last2=Simpson |year=1992 |title=Eusociality in the beetle ''Austroplatypus incompertus'' (Coleoptera: Curculionidae) |journal=] |volume=79 |issue=2 |pages=86–87 |doi=10.1007/BF01131810 |bibcode=1992NW.....79...86K |s2cid=35534268}}</ref> This species forms colonies in which a single female is fertilized, and is protected by many unfertilized females, which serve as workers excavating tunnels in trees. This species has cooperative brood care, in which individuals care for juveniles that are not their own.<ref name=Kent1992 />

==== In gall-inducing insects ====

]-forming ] (larva on left, adult on right) with galls (centre) on '']'' leaves. Its soldier caste defends the colony in its gall fortress. ]]

Some ]s, including the ]-forming ], '']'' (order ]), and ] such as '']'' (order ]), are described as eusocial.<ref name=Stern1994>{{cite journal |last=Stern |first=D. L. |title=A phylogenetic analysis of soldier evolution in the aphid family Hormaphididae |journal=Proceedings of the Royal Society |year=1994 |volume=256 |issue=1346 |pages=203–209 |doi=10.1098/rspb.1994.0071 |pmid=8029243 |bibcode=1994RSPSB.256..203S |s2cid=14607482}}</ref><ref name=Aoki2005>{{cite journal |last1=Aoki |first1=S. |last2=Imai |first2=M. |title=Factors affecting the proportion of sterile soldiers in growing aphid colonies |journal=] |year=2005 |volume=47 |issue=2 |pages=127–136 |doi=10.1007/s10144-005-0218-z |bibcode=2005PopEc..47..127A |s2cid=2224506 }}</ref> These species have very high relatedness among individuals due to their ] (sterile soldier castes being clones produced by ]), but the gall-inhabiting behavior gives these species a defensible resource. They produce soldier castes for fortress defense and protection of the colony against predators, ]s, and competitors. In these groups, eusociality is produced by both high relatedness and by living in a restricted, shared area.<ref>{{cite journal |doi=10.1038/359724a0 |author=Crespi B. J. |year=1992 |title=Eusociality in Australian gall thrips |journal=Nature |volume=359 |issue=6397 |pages=724–726 |bibcode=1992Natur.359..724C |s2cid=4242926 }}</ref><ref name=Stern1996>{{cite journal |last1=Stern |first1=D. |last2=Foster |first2=W. |title=The evolution of soldiers in aphids |journal=Biological Reviews |year=1996 |volume=71 |issue=1 |pages=27–79 |doi=10.1111/j.1469-185x.1996.tb00741.x |pmid=8603120 |s2cid=8991755}}</ref>


=== In crustaceans === === In crustaceans ===
Eusociality has also arisen among some ]s that live in groups in a restricted area. '']'', parasitic shrimp that rely on fortress defense and live in groups of closely related individuals in tropical reefs and sponges,<ref>{{cite journal|title=Multiple origins of eusociality among sponge-dwelling shrimps (''Synalpheus'')|first=J. Emmett|last=Duffy|coauthors=Cheryl L. Morrison and Ruben Rios|journal=Evolution|volume=54|issue=2|year=2000|pages=503–516|pmid=10937227|doi=10.1111/j.0014-3820.2000.tb00053.x}}</ref> live eusocially with a single breeding female and a large number of male defenders, armed with enlarged snapping claws. As with other eusocial societies, there is a single shared living space for the colony members, and the non-breeding members act to defend it.<ref>{{cite journal|journal=Bulletin of Marine Science|title=On the frequency of eusociality in snapping shrimps (Decapoda: Alpheidae), with description of a second eusocial species|author=Duffy, J. E|year=1998|volume=63|issue=2|pages=387–400|url=http://www.ingentaconnect.com/content/umrsmas/bullmar/1998/00000063/00000002/art00011}}</ref>


Eusociality has evolved in three different lineages in the colonial ] genus '']''. '']'', '']'', ''S. filidigitus'', ''S. elizabethae'', ''S. chacei'', ''S. riosi'', ''S. duffyi'', and ''S. cayoneptunus'' are the eight recorded species of parasitic shrimp that rely on fortress defense and live in groups of closely related individuals in tropical reefs and sponges.<ref name="Duffy">{{cite journal |last1=Duffy |first1=J. Emmett |last2=Morrison |first2=Cheryl L. |last3=Rios |first3=Ruben |title=Multiple origins of eusociality among sponge-dwelling shrimps (''Synalpheus'') |journal=] |volume=54 |issue=2 |year=2000 |pages=503–516 |pmid=10937227 |doi=10.1111/j.0014-3820.2000.tb00053.x |s2cid=1088840}}</ref> They live eusocially with a single breeding female, and a large number of male defenders armed with enlarged snapping claws. There is a single shared living space for the colony members, and the non-breeding members act to defend it.<ref>{{cite journal |last=Duffy |first=J. E. |title=On the frequency of eusociality in snapping shrimps (Decapoda: Alpheidae), with description of a second eusocial species |journal=Bulletin of Marine Science |year=1998 |volume=63 |issue=2 |pages=387–400 |url=http://www.ingentaconnect.com/content/umrsmas/bullmar/1998/00000063/00000002/art00011}}</ref>
=== In mammals ===

Mammalian examples include the ] and the ] (''Heterocephalus glaber'' & ''Fukomys damarensis'', respectively),<ref>{{cite journal | last1 = Burda | first1 = H. Honeycutt | last2 = Begall | first2 = S. | last3 = Locker-Grutjen | first3 = O | last4 = Scharff | first4 = A. | year = 2000 | title = Are naked and common mole-rats eusocial and if so, why? | url = http://cat.inist.fr/?aModele=afficheN&cpsidt=1456956 | journal = Behavioral ecology and sociobiology | volume = 47 | issue = 5| pages = 293–303 }}</ref> two species of vertebrates that are diploid and highly inbred. Usually living in harsh or limiting environments, these mole rats aid in raising siblings and relatives born to a single reproductive queen. However, this classification is controversial owing to disputed definitions of 'eusociality.' A study conducted by O’Riain and Faulkes in 2008 suggests that due to regular inbreeding avoidance, mole rats sometimes outbreed and establish new colonies when resources are sufficient.<ref name="O'Riain and Faulkes, (2008)">{{cite journal | last1 = O'Riain | first1 = M.J. | last2 = Faulkes | first2 = C. G. | year = 2008 | title = African mole rats: eusociality, relatedness and ecological constraints | url = http://www.springerlink.com/content/q11245457q771m3t/ | journal = Ecology of Social Evolution | volume = | issue = | pages = 207–223 }}</ref> Thus, it is uncertain whether mole rats classify as true eusocial organisms, since their social behavior depends largely on their resources and environment.
The fortress defense hypothesis additionally points out that because sponges provide both food and shelter, there is an aggregation of relatives (because the shrimp do not have to disperse to find food), and much competition for those nesting sites. Being the target of attack promotes a good defense system (soldier caste); soldiers promote the fitness of the whole nest by ensuring safety and reproduction of the queen.<ref>{{cite journal |last=Duffy |first=J. E. |title=The ecology and evolution of eusociality in sponge-dwelling shrimp |journal=Genes, Behaviors and Evolution of Social Insects |date=2003 |pages=217–254}}</ref>

Eusociality offers a competitive advantage in shrimp populations. Eusocial species are more abundant, occupy more of the habitat, and use more of the available resources than non-eusocial species.<ref>{{cite journal |last1=Duffy |first1=J. E. |last2=Macdonald |first2=K. S. |title=Kin structure, ecology and the evolution of social organization in shrimp: a comparative analysis |journal=Proceedings of the Royal Society B: Biological Sciences |date=2010 |volume=277 |issue=1681 |pages=575–584 |doi=10.1098/rspb.2009.1483 |pmid=19889706 |pmc=2842683}}</ref><ref>{{cite journal |last1=Hultgren |first1=K.M. |last2=Duffy |first2=J. E. |title=Phylogenetic community ecology and the role of social dominance in sponge-dwelling shrimp |journal=Ecology Letters |date=2012 |volume=15 |issue=7 |pages=704–713 |doi=10.1111/j.1461-0248.2012.01788.x|pmid=22548770 |bibcode=2012EcolL..15..704H }}</ref><ref>{{cite journal |last1=Macdonald |first1=K.S. |last2=Rios |first2=R. |last3=Duffy |first3=J. E. |title=Biodiversity, host specificity, and dominance by eusocial species among sponge-dwelling alpheid shrimp on the Belize Barrier Reef |journal=Diversity and Distributions |date=2006 |volume=12 |issue=2 |pages=165–178 |doi=10.1111/j.1366-9516.2005.00213.x |bibcode=2006DivDi..12..165M |s2cid=44096968 |url=https://scholarworks.wm.edu/cgi/viewcontent.cgi?article=2862&context=vimsarticles |doi-access=free}}</ref>

=== In trematodes ===

The ] are a class of parasitic flatworm, also known as flukes. One species, '']'', has evolved eusociality involving a colony creating a class of sterile soldiers.<ref name="Richards 2024">{{cite journal |last=Richards |first=Miriam H. |date=10 September 2024 |title=Social evolution and reproductive castes in trematode parasites |journal=Proceedings of the National Academy of Sciences |volume=121 |issue=37 |doi=10.1073/pnas.2414228121}}</ref> One fluke invades a host and establishes a colony of dozens to thousands of clones that work together to take it over. Since rival trematode species can invade and replace the colony, it is protected by a specialized caste of sterile soldier trematodes.<ref name="Metz 2024">{{cite journal |last1=Metz |first1=Daniel C. G. |last2=Hechinger |first2=Ryan F. |date=30 July 2024 |title=The physical soldier caste of an invasive, human-infecting flatworm is morphologically extreme and obligately sterile |journal=Proceedings of the National Academy of Sciences |volume=121 |issue=31 |doi=10.1073/pnas.2400953121 |pmc=11295071 |pmid=39042696|bibcode=2024PNAS..12100953M }}</ref> Soldiers are smaller, more mobile, and develop along a different pathway than sexually mature reproductives. One difference is that a soldier's mouthparts (pharynx) is five times as big as those of the reproductives. They make up nearly a quarter of the volume of the soldier. These soldiers do not have a germinal mass, never metamorphose to be reproductive, and are, therefore, obligately sterile.<ref name="Metz 2024"/> Soldiers are readily distinguished from the immature and mature reproductive worms. Soldiers are more aggressive than reproductives, attacking heterospecific trematodes that infect their host ''in vitro''. ''H. pumilio'' soldiers do not attack conspecifics from other colonies. The soldiers are not evenly distributed throughout the host body. They are found in the highest numbers in the basal visceral mass, where competing trematodes tend to multiply during the early phase of infection. This strategic positioning allows them to effectively defend against invaders, similar to how soldier distribution patterns are seen in other animals with defensive castes. They "appear to be an obligately sterile physical caste, akin to that of the most advanced social insects".<ref name="Metz 2024"/>

=== In nonhuman mammals ===

] burrow with soldiers, workers, and queen, a social structure similar to the castes of the eusocial insects]]

Among mammals, two species in the rodent group ] are eusocial, the ] (''Heterocephalus glaber'') and the ] (''Fukomys damarensis''), both of which are highly ].<ref name=Burda>{{cite journal |last1=Burda |first1=H. Honeycutt |last2=Begall |first2=S. |last3=Locker-Grutjen |first3=O. |last4=Scharff |first4=A. |year=2000 |title=Are naked and common mole-rats eusocial and if so, why? |url=http://cat.inist.fr/?aModele=afficheN&cpsidt=1456956 |journal=Behavioral Ecology and Sociobiology |volume=47 |issue=5 |pages=293–303 |doi=10.1007/s002650050669 |bibcode=2000BEcoS..47..293B |s2cid=35627708 |access-date=2007-11-30 |archive-date=2016-03-04 |archive-url=https://web.archive.org/web/20160304120855/http://cat.inist.fr/?aModele=afficheN&cpsidt=1456956 |url-status=dead}}</ref> Usually living in harsh or limiting environments, these mole-rats aid in raising siblings and relatives born to a single reproductive queen. However, this classification is controversial owing to disputed definitions of 'eusociality'. To ], mole rats sometimes outbreed and establish new colonies when resources are sufficient.<ref name="O'Riain and Faulkes, (2008)">{{cite book |last1=O'Riain |first1=M.J. |last2=Faulkes |first2=C. G. |year=2008 |title=Ecology of Social Evolution |publisher=Springer |pages=207–223 |doi=10.1007/978-3-540-75957-7_10 |isbn=978-3-540-75956-0 |chapter=African Mole-Rats: Eusociality, Relatedness and Ecological Constraints }}</ref> Most of the individuals cooperatively care for the brood of a single reproductive female (the queen) to which they are most likely related. Thus, it is uncertain whether mole rats are truly eusocial, since their social behavior depends largely on their resources and environment.<ref>{{cite journal |last=O' Riain |first=M. |title=A Dispersive Morph in the Naked Mole-Rat |journal=Nature |year=1996 |volume=380 |pages=619–621 |doi=10.1038/380619a0 |issue=6575 |display-authors=etal |pmid=8602260 |bibcode=1996Natur.380..619O |s2cid=4251872 }}</ref>

Some mammals in the ] and ] have eusocial tendencies, especially ]s (''Suricata suricatta'') and ]s (''Helogale parvula''). These show cooperative breeding and marked reproductive skews. In the dwarf mongoose, the breeding pair receives food priority and protection from subordinates and rarely has to defend against predators.<ref name="williams">{{cite journal |last1=Williams |first1=S. A. |last2=Shattuck |first2=M. R. |year=2015 |title=Ecology, longevity and naked mole-rats: confounding effects of sociality? |journal=Proceedings of the Royal Society of London B: Biological Sciences |volume=282 |issue=1802 |doi=10.1098/rspb.2014.1664 |pmid=25631992 |pages=20141664 |pmc=4344137}}</ref>

=== In humans ===

{{further|Group selection}}

Scientists have debated whether humans are ] or eusocial.<ref>{{cite journal |last1=Foster |first1=Kevin R. |last2=Ratnieks |first2=Francis L.W. |year=2005 |title=A new eusocial vertebrate? |url=http://www.zoo.ox.ac.uk/group/foster/FosterRatnieksTREE2005.pdf |journal=Trends in Ecology & Evolution |volume=20 |issue=7 |pages=363–364 |doi=10.1016/j.tree.2005.05.005 |pmid=16701397 |bibcode=2005TEcoE..20..363F |access-date=2011-04-04 |archive-date=2012-03-11 |archive-url=https://web.archive.org/web/20120311211934/http://www.zoo.ox.ac.uk/group/foster/FosterRatnieksTREE2005.pdf |url-status=dead}}</ref> ] called humans eusocial apes, arguing for similarities to ants, and observing that early ] cooperated to rear their children while other members of the same group hunted and foraged.<ref name=Gintis/> Wilson and others argued that through cooperation and teamwork, ants and humans form superorganisms.<ref name="Kesebir 2012">{{cite journal | last=Kesebir | first=Selin | title=The Superorganism Account of Human Sociality: How and When Human Groups Are Like Beehives | journal=Personality and Social Psychology Review | volume=16 | issue=3 | date=2012 | issn=1088-8683 | doi=10.1177/1088868311430834 | pages=233–261| pmid=22202149 }}</ref><ref name="Foster Ratnieks 2005">{{cite journal |last1=Foster |first1=Kevin R. |last2=Ratnieks |first2=Francis L. W. |date=2005 |title=A new eusocial vertebrate? |url=https://zoo-kfoster.zoo.ox.ac.uk/sites/default/files/files/FosterRatnieksTREE2005.pdf |journal=Trends in Ecology & Evolution |volume=20 |issue=7 |pages=363–364 |doi=10.1016/j.tree.2005.05.005 |pmid=16701397|bibcode=2005TEcoE..20..363F }}</ref><ref name="Chu Buchman-Schmitt 2017">{{Cite journal |last1=Chu |first1=Carol |last2=Buchman-Schmitt |first2=Jennifer M. |last3=Stanley |first3=Ian H. |last4=Hom |first4=Melanie A. |last5=Tucker |first5=Raymond P. |last6=Hagan |first6=Christopher R. |last7=Rogers |first7=Megan L. |last8=Podlogar |first8=Matthew C. |last9=Chiurliza |first9=Bruno |date=2017 |title=The interpersonal theory of suicide: A systematic review and meta-analysis of a decade of cross-national research |journal=Psychological Bulletin |volume=143 |issue=12 |pages=1313–1345 |doi=10.1037/bul0000123 |pmc=5730496 |pmid=29072480}}</ref> Wilson's claims were vigorously rejected by critics of ] theory, which grounded Wilson's argument,<ref name="Gintis">{{cite journal |last=Gintis |first=Herbert |title=Clash of the Titans. Book review of 'The Social Conquest of Earth' by Edward O. Wilson |journal=BioScience |date=2012 |volume=62 |issue=11 |pages=987–991 |doi=10.1525/bio.2012.62.11.8 |doi-access=free }}</ref><ref name="Dawkins2012">{{cite journal |last=Dawkins |first=Richard |author-link=Richard Dawkins |title=The Descent of Edward Wilson. Book review of 'The Social Conquest of Earth' by Edward O. Wilson |journal=Prospect |date=24 May 2012 }}</ref><ref name="Pinker2012">{{cite web |last1=Pinker |first1=Steven |author-link1=Steven Pinker |title=The False Allure of Group Selection |url=https://www.edge.org/conversation/steven_pinker-the-false-allure-of-group-selection |publisher=] |access-date=31 July 2016 }}</ref> and because human ] is not divided between castes.<ref name="Dawkins2012"/>

Though controversial,<ref>{{Cite journal |last1=Kramer |first1=Jos |last2=Meunier |first2=Joël |date=2016-04-28 |title=Kin and multilevel selection in social evolution: a never-ending controversy? |journal=F1000Research |volume=5 |pages=F1000 Faculty Rev–776 |doi=10.12688/f1000research.8018.1 |issn=2046-1402 |pmc=4850877 |pmid=27158472 |doi-access=free }}</ref> it has been suggested that male homosexuality<ref>{{Cite journal |last1=VanderLaan |first1=Doug P. |last2=Ren |first2=Zhiyuan |last3=Vasey |first3=Paul L. |date=2013 |title=Male androphilia in the ancestral environment. An ethnological analysis |journal=Human Nature |volume=24 |issue=4 |pages=375–401 |doi=10.1007/s12110-013-9182-z |pmid=24091924|s2cid=44341304 }}</ref> and female menopause<ref>{{Cite journal |last1=Hawkes |first1=Kristen |last2=Coxworth |first2=James E. |date=2013 |title=Grandmothers and the evolution of human longevity: a review of findings and future directions |journal=Evolutionary Anthropology |volume=22 |issue=6 |pages=294–302 |doi=10.1002/evan.21382 |pmid=24347503|s2cid=37985774 }}</ref> could have evolved through ].<ref>{{Cite journal |last1=Hooper |first1=Paul L. |last2=Gurven |first2=Michael |last3=Winking |first3=Jeffrey |last4=Kaplan |first4=Hillard S. |date=2015-03-22 |title=Inclusive fitness and differential productivity across the life course determine intergenerational transfers in a small-scale human society |journal=Proceedings of the Royal Society B: Biological Sciences |volume=282 |issue=1803 |pages=20142808 |doi=10.1098/rspb.2014.2808 |pmc=4345452 |pmid=25673684}}</ref><ref>{{Cite journal |last=Lubinsky |first=Mark |date=2018 |title=Evolutionary justifications for human reproductive limitations |journal=Journal of Assisted Reproduction and Genetics |volume=35 |issue=12 |pages=2133–2139 |doi=10.1007/s10815-018-1285-3 |pmc=6289914 |pmid=30116921}}</ref> This would mean that humans sometimes exhibit a type of ] behavior known as "]", with juveniles and sexually mature adolescents helping their parents raise subsequent broods, as in some birds,<ref>{{cite journal |author1=Jetz, Walter |author2=Rubenstein, Dustin R. |year=2011 |title=Environmental Uncertainty and the Global Biogeography of Cooperative Breeding in Birds |url=https://www.researchgate.net/publication/49708773 |journal=Current Biology |volume=21 |issue=1 |pages=72–78 |doi=10.1016/j.cub.2010.11.075 |pmid=21185192 |doi-access=free|bibcode=2011CBio...21...72J }}</ref> ], and ]s.<ref name=":02">{{Cite journal |last1=Rosenbaum |first1=Stacy |last2=Gettler |first2=Lee T. |date=2018 |title=With a little help from her friends (and family) part I: the ecology and evolution of non-maternal care in mammals |journal=Physiology & Behavior |volume=193 |issue=Pt A |pages=1–11 |doi=10.1016/j.physbeh.2017.12.025 |pmid=29933836 |s2cid=49380840|doi-access=free }}</ref> These species are not eusocial: they do not have castes, and helpers reproduce on their own if given the opportunity.<ref>{{Cite journal |last1=Clutton-Brock |first1=T. H. |author1-link=Tim Clutton-Brock |last2=Hodge |first2=S. J. |last3=Flower |first3=T. P. |date=2008-09-01 |title=Group size and the suppression of subordinate reproduction in Kalahari meerkats |url=https://www.sciencedirect.com/science/article/pii/S0003347208002005 |journal=] |volume=76 |issue=3 |pages=689–700 |doi=10.1016/j.anbehav.2008.03.015 |s2cid=53203398 |issn=0003-3472}}</ref><ref name="Foster Ratnieks 2005" /><ref>{{Cite journal |date=1995 |title=Forum: The eusociality continuum |url=https://academic.oup.com/beheco/article/6/1/102/230083 |journal=Behavioral Ecology |volume=6 |issue=1 |pages=102–108 |doi=10.1093/beheco/6.1.102 |doi-access=free }}</ref>

=== In plants ===

]'' may display a simple form of eusociality.]]

One plant, the ] staghorn fern, '']'' (]), may exhibit a primitive form of eusocial behavior amongst clones. The evidence for this is that individuals live in colonies, where they are structured in different ways, with ]s of differing size and shape, to collect and store water and nutrients for the colony to use. At the top of a colony, there are both pleated fan-shaped "nest" fronds that collect and hold water, and gutter-shaped "strap" fronds that channel water: no solitary ''Platycerium'' species has both types. At the bottom of a colony, there are "nest" fronds that clasp the trunk of the tree supporting the fern, and drooping photosynthetic fronds. These are argued to be adapted to support the colony structurally, i.e. that the individuals in the colony are to some degree specialized for tasks, a ].<ref name="NYT Ferns 2021"/><ref name="Burns Hutton Shepherd 2021"/><ref name="Burns 2021">{{cite journal |last=Burns |first=Kevin C. |title=On the selective advantage of coloniality in staghorn ferns (Platycerium bifurcatum, Polypodiaceae) |journal=Plant Signaling & Behavior |volume=16 |issue=11 |date=2021-11-02 |issn=1559-2324 |pmid=34338155 |pmc=8525959 |doi=10.1080/15592324.2021.1961063 |page=|bibcode=2021PlSiB..1661063B }}</ref>


== Evolution == == Evolution ==

{{Main|Evolution of eusociality}}
{{main|Evolution of eusociality}}


=== Phylogenetic distribution === === Phylogenetic distribution ===


{{further|Sociality}}<!--wider context-->
Eusociality is a rare but widespread phenomena originating in members of the seven aforementioned orders- ] (mole rats), ] (snapping shrimp), ] (thrips), ] (aphids), ] (termites), ] (ambrosia beetles), and ] (ants, bees, and wasps). All species of termites are eusocial, and it is believed that they were the first eusocial animals to evolve, sometime in the upper ] period (~150 million years ago).<ref>{{cite book |last1=Thorne |first1=B.L. |last2=Grimaldi |first2=DA | last3=Krishna|first3=K |editor-last1=Abe |editor-first1=T. |editor-last2=Bignell |editor-first1=D.E |editor-last3=Higashi |editor-first3=M. |title=Termites: evolution, sociality, symbioses, ecology. |publisher=Kluwer Academic Publishers |date=January 1, 2001 |origyear=1st. Pub. 2000 |pages=77–93 |chapter=Early fossil history of the termites |lastauthoramp=y}}</ref> All other orders also contain non-eusocial species, including many lineages where eusociality was inferred to be the ancestral state. Thus the number of independent evolutions of eusociality is still under investigation.


Eusociality is a rare but widespread phenomenon in species in at least seven orders in the ], as shown in the ] (non-eusocial groups not shown). All species of termites are eusocial, and it is believed that they were the first eusocial animals to evolve, sometime in the upper ] period (~150 million years ago).<ref>{{cite book |last1=Thorne |first1=B.L. |last2=Grimaldi |first2=D.A. |last3=Krishna |first3=K. |editor-last1=Abe |editor-first1=T. |editor-last2=Bignell |editor-first2=D.E |editor-last3=Higashi | editor-first3=M. |title=Termites: evolution, sociality, symbioses, ecology. |publisher=] |year=2001 |orig-year=2000 |pages=77–93 |chapter=Early fossil history of the termites}}</ref> The other orders shown contain both eusocial and non-eusocial species, including many lineages where eusociality is inferred to be the ancestral state. Thus the number of independent evolutions of eusociality (]s) is not known. The major eusocial groups are shown in '''boldface''' in the phylogenetic tree.
]

{{clade|style=line-height:105%; font-size:95%;
|label1=]s
|1={{clade
|label1=]ia
|1={{clade
|label1=]
|1=]s ]
|label2=]
|2={{clade
|label1=]
|1='']'' spp. ]
|label2=]a
|2={{clade
|label1=]
|1={{clade
|label1=all ''']s'''
|sublabel1= (150 ])
|1=]
}}
|label2=]
|2={{clade
|label1=]
|1={{clade |label1=]
|1='']'' spp. ]
|label2=]
|2=various ]s ]
}}
|label2=]
|2={{clade
|label1=]
|1='']'' ]
|label2=]
|2={{clade
|1=many ''']''' (wasps) ]
|label2=
|2={{clade
|label1=all ''']s'''
|sublabel1= (100 ])
|1=]
|2=many ''']s''' ]
}}
}}
}}
}}
}}
}}
}}
|label2=]ae
|2='''Staghorn fern''' '']'' ]
}}
}}


=== Paradox === === Paradox ===


Eusocial animals have appeared paradoxical to many theorists of the field of evolution: if adaptive evolution unfolds by differential survival of individuals, how can individuals incapable of passing on their genes possibly evolve and persist? In ] (first edition, Ch. 8), ] referred to the existence of sterile castes as the "one special difficulty, which at first appeared to me insuperable, and actually fatal to my theory." Darwin anticipated that a possible resolution to the paradox might lie in the close family relationship, which ] would later quantify with his ] theory. Prior to the ], eusociality was seen as paradoxical: if adaptive evolution unfolds by differential reproduction of individual organisms, the evolution of individuals incapable of passing on their genes presents a challenge. In '']'', ] referred to the existence of sterile castes as the "one special difficulty, which at first appeared to me insuperable, and actually fatal to my theory".<ref>Darwin, Charles. ''On the Origin of Species'', 1859. Chapter 8</ref> Darwin anticipated that a possible resolution to the paradox might lie in the close family relationship, which ] quantified a century later with his 1964 ] theory. After the gene-centered view of evolution was developed in the mid-1970s, non-reproductive individuals were seen as an extended phenotype of the genes, which are the primary beneficiaries of natural selection.<ref>{{cite book |last=Dawkins |first=Richard |author-link=Richard Dawkins |chapter=6. Organisms, Groups, and Memes: Replicators or Vehicles? |title=The Extended Phenotype |year=2016 |orig-year=1982 |publisher=] |isbn=978-0198788911 |pages=147–178}}</ref>


=== Inclusive fitness and haplodiploidy === === Inclusive fitness and haplodiploidy ===


==== Argument that haplodiploidy favors eusociality ====
According to inclusive fitness theory, organisms can gain fitness not just through increasing their own reproductive output, but also via increasing the reproductive output of other individuals that share their genes, especially their close relatives. Individuals will be selected to help their relatives when the cost of helping is less than the benefit gained by their relative multiplied by the fraction of genes that they share, i.e. when ''Cost < relatedness * Benefit''. Under inclusive fitness theory, the necessary conditions for eusociality to evolve are more easily fulfilled by haplodiploid species because of their unusual relatedness structure.
In haplodiploid species, females develop from fertilized eggs and males develop from unfertilized eggs. Because a male is haploid, his daughters will share 100% of his genes and 50% of their mothers. Therefore, they will share 75% of their genes with each other. This mechanism of sex determination gives rise to what W. D. Hamilton first termed "supersisters" who are more related to their sisters than they would be to their own offspring.<ref>{{cite journal|last=Hamilton|first=W. D.|title=The Genetical Evolution of Social Behaviour II|journal=Journal of Theoretical Biology|date=20 March 1964|volume=7|issue=1|pages=17–52|doi=10.1016/0022-5193(64)90039-6|url=http://www.sciencedirect.com/science/article/pii/0022519364900396|accessdate=13 November 2012|pmid=5875340}}</ref> Even though workers often do not reproduce, they can potentially pass on more of their genes by helping to raise their sisters than they would by having their own offspring (each of which would only have 50% of their genes). This unusual situation where females may have greater fitness when they help rear siblings rather than producing offspring is often invoked to explain the multiple independent evolutions of eusociality (arising at least nine separate times) within the haplodiploid group Hymenoptera.
However, now many eusocial species have been discovered that are not haplodiploid (including termites, some snapping shrimp, and mole rats). Conversely many bees are haplodiploid yet are not eusocial, and among eusocial species many queens mate with multiple males, thus resulting in a hive of half-sisters that only share 25% of their genes. The association between haplodiploidy and eusociality is below statistical significance,<ref name=NTW>{{cite journal|last=Nowak|first=Martin|coauthors=Corina Tarnita, EO Wilson|title=The evolution of eusociality|journal=Nature|date=26 August 2010|volume=466|pmid=20740005|issue=7310|pages=1057–1062|doi=10.1038/nature09205|url=http://www.nature.com/nature/journal/v466/n7310/full/nature09205.html|accessdate=15 Mar 2011}}</ref> all of which suggests that haplodiploidy alone is neither necessary nor sufficient for eusociality to emerge. However relatedness does still play a part, as monogamy (queens mating singly) has been shown to be the ancestral state for all eusocial species so far investigated.<ref>{{cite journal
| author = William O. H. Hughes, Benjamin P. Oldroyd, Madeleine Beekman, Francis L. W. Ratnieks
| title = Ancestral Monogamy Shows Kin Selection Is Key to the Evolution of Eusociality
| journal = ]
| volume = 320
| issue = 5880
| pages = 1213–1216
| publisher = ]
| date = 2008-05-30
| url = http://www.sciencemag.org/cgi/content/abstract/320/5880/1213
| accessdate = 2008-08-04
| doi = 10.1126/science.1156108
| pmid = 18511689}}</ref>


{{further|Inclusive fitness|Haplodiploidy}}
=== Ecology ===


], with ] males and ] females. It has been suggested that this organisation favours eusociality, but haplodiploidy is neither necessary nor sufficient for eusociality to emerge.]]
Many scientists citing the close phylogenetic relationships between eusocial and non-eusocial species are making the case that environmental factors are especially important in the evolution of eusociality. The relevant factors primarily involve the distribution of food and predators.


According to ] theory, organisms can gain fitness by increasing the reproductive output of other individuals that share their genes, especially their close relatives. Natural selection favors individuals to help their relatives when the cost of helping is less than the benefit gained by their relative multiplied by the fraction of genes that they share, i.e. when ''Cost < relatedness * Benefit''. W. D. Hamilton suggested in 1964 that eusociality could evolve more easily among ] species such as Hymenoptera, because of their unusual relatedness structure.<ref>v7, pp. 1–16, and 17-52.</ref><ref name="Hamilton 1964a">{{cite journal |last=Hamilton |first=W. D. |author-link=W. D. Hamilton |title=The Genetical Evolution of Social Behaviour I |journal=] |date=20 March 1964 |volume=7 |issue=1 |pages=1–16|doi=10.1016/0022-5193(64)90038-4 |pmid=5875341 |bibcode=1964JThBi...7....1H }}</ref><ref name="Hamilton 1964b"/>
With the exception of some aphids, all eusocial species live in a communal nest which provides both shelter and access to food resources. Mole rats and ants live in underground burrows; wasps, bees, and some termites build above-ground hives; thrips and aphids inhabit galls (neoplastic outgrowths) induced on plants; ambrosia beetles and some termites nest together in dead wood; and snapping shrimp inhabit crevices in marine sponges. For many species the habitat outside the nest is often extremely arid or barren, creating such a high cost to dispersal that the chance to take over the colony following parental death is greater than the chance of dispersing to form a new colony. Defense of such fortresses from both predators and competitors often favors the evolution of non-reproductive soldier castes, while the high costs of nest construction and expansion favor non-reproductive worker castes.


In haplodiploid species, females develop from fertilized eggs and males develop from unfertilized eggs. Because a male is haploid, his daughters share 100% of his genes and 50% of their mother's. Therefore, they share 75% of their genes with each other. This mechanism of sex determination gives rise to what W. D. Hamilton first termed "supersisters", more closely related to their sisters than they would be to their own offspring.<ref name="Hamilton 1964b">{{cite journal |last=Hamilton |first=W. D. |author-link=W. D. Hamilton |title=The Genetical Evolution of Social Behaviour II |journal=Journal of Theoretical Biology |date=20 March 1964 |volume=7 |issue=1 |pages=17–52 |doi=10.1016/0022-5193(64)90039-6 |pmid=5875340 |bibcode=1964JThBi...7...17H }}</ref> Even though workers often do not reproduce, they can pass on more of their genes by helping to raise their sisters than by having their own offspring (each of which would only have 50% of their genes). This unusual situation, where females may have greater fitness when they help rear sisters rather than producing offspring, is often invoked to explain the multiple independent evolutions of eusociality (at least nine separate times) within the Hymenoptera.<ref>{{Cite journal |last1=Quiñones |first1=Andrés E. |last2=Pen |first2=Ido |title=A unified model of Hymenopteran preadaptations that trigger the evolutionary transition to eusociality |journal=Nature Communications |date=23 June 2017 |volume=8 |pages=15920 |doi=10.1038/ncomms15920 |pmc=5490048 |pmid=28643786 |bibcode=2017NatCo...815920Q}}</ref>
The importance of ecology is supported by evidence such as experimentally induced reproductive division of labor, for example when normally solitary queens are forced together.<ref>{{cite journal

| author = Cahan, SH. & E. Gardner-Morse
==== Argument that haplodiploidy does not favor eusociality ====
| title = The emergence of reproductive division of labor in forced queen groups of the ant Pogonomyrmex barbatus

| journal = J Zool.
Against the supposed benefits of haplodiploidy for eusociality, ] notes that while females share 75% of genes with their sisters in haplodiploid populations, they only share 25% of their genes with their brothers.<ref name="Trivers 1976">{{Cite journal |last1=Trivers |first1=Robert L. |author1-link=Robert Trivers |last2=Hare |first2=Hope |title=Haplodiploidy and the evolution of social insects |year=1976 |journal=Science |volume=191 |issue=4224 |pages=249–263 |doi=10.1126/science.1108197 |pmid=1108197 |bibcode=1976Sci...191..249T}}</ref> Accordingly, the average relatedness of an individual to their sibling is 50%. Therefore, helping behavior is only advantageous if it is biased to helping sisters, which would drive the population to a 1:3 sex ratio of males to females. At this ratio, males, as the rarer sex, increase in reproductive value, reducing the benefit of female-biased investment.<ref>{{Cite journal |last1=Alpedrinha |first1=João |last2=West |first2=Stuart A. |last3=Gardner |first3=Andy |title=Haplodiploidy and the evolution of eusociality: worker reproduction |year=2013 |journal=The American Naturalist |volume=182 |issue=4 |pages=421–438 |doi=10.1086/671994 |pmid=24021396 |url=http://www.press.uchicago.edu/ucp/journals/journal/an.html |hdl=10023/5520 |s2cid=6548485 |hdl-access=free}}</ref>
| volume = 291

| issue = 1
Further, not all eusocial species are haplodiploid: termites, some snapping shrimps, and mole rats are not. Conversely, many non-eusocial bees are haplodiploid, and among eusocial species many queens mate with multiple males, resulting in a hive of half-sisters that share only 25% of their genes. The association between haplodiploidy and eusociality is below statistical significance.<ref name="Nowak2010">{{cite journal |last=Nowak |first=Martin |author2=Tarnita, Corina |last3=Wilson |first3=Edward O. |author3-link=Edward O. Wilson |date=26 August 2010 |title=The evolution of eusociality |journal=Nature |volume=466 |issue=7310 |pages=1057–1062 |doi=10.1038/nature09205 |pmc=3279739 |pmid=20740005 |bibcode=2010Natur.466.1057N}}</ref> Haplodiploidy is thus neither necessary nor sufficient for eusociality to emerge.<ref>{{Cite journal |last=Wilson |first=Edward O. |author-link=Edward O. Wilson |date=2008-01-01 |title=One Giant Leap: How Insects Achieved Altruism and Colonial Life |journal=] |volume=58 |issue=1 |pages=17–25 |doi=10.1641/b580106 |doi-access=free}}</ref> Relatedness does still play a part, as monogamy (queens mating singly) is the ancestral state for all eusocial species so far investigated.<ref name=hughes2008>{{cite journal |last1=Hughes |first1=William O. H. |author2=Benjamin P. Oldroyd |author3=Madeleine Beekman |author4=Francis L. W. Ratnieks |title=Ancestral Monogamy Shows Kin Selection Is Key to the Evolution of Eusociality | journal=] |volume=320 |issue=5880 |pages=1213–1216 |date=2008-05-30 |doi=10.1126/science.1156108 | pmid=18511689 |bibcode=2008Sci...320.1213H |s2cid=20388889 }}</ref> If kin selection is an important force driving the evolution of eusociality, monogamy should be the ancestral state, because it maximizes the relatedness of colony members.<ref name=hughes2008/>
| pages = 12–22

| year = 2013
== Evolutionary ecology ==
}}</ref> Conversely, female Damarland mole rats undergo hormonal changes that promote dispersal after periods of high rainfall,<ref>{{cite journal

| author = Molteno, A. J., Bennett, N. C.
Increased parasitism and predation rates are the primary ecological drivers of social organization. Group living affords colony members defense against enemies, specifically predators, parasites, and competitors, and allows them to gain advantage from superior foraging methods.<ref name="Wilson Hölldobler 2005"/> The importance of ecology in the evolution of eusociality is supported by evidence such as experimentally induced reproductive division of labor, for example when normally solitary queens are forced together.<ref>{{cite journal |last1=Cahan |first1=S. H. |last2=Gardner-Morse |first2=E. |title=The emergence of reproductive division of labor in forced queen groups of the ant ''Pogonomyrmex barbatus'' |journal=] |volume=291 |issue=1 |pages=12–22 |year=2013 |doi=10.1111/jzo.12071|doi-access=free }}</ref> Conversely, female ]s undergo hormonal changes that promote dispersal after periods of high rainfall<!-- supporting the plasticity of eusocial traits in response to environmental cues.-->.<ref>{{cite journal |last1=Molteno |first1=A. J. |last2=Bennett |first2=N. C. |title=Rainfall, dispersal and reproductive inhibition in eusocial Damaraland mole-rats (''Cryptomys damarensis'') |journal=] |volume=256 |issue=4 |pages=445–448 |year=2002 |doi=10.1017/s0952836902000481}}</ref>
| title = Rainfall, dispersal and reproductive inhibition in eusocial Damaraland mole-rats (Cryptomys damarensis)

| journal = J Zool.
Climate too appears to be a selective agent driving social complexity; across bee lineages and Hymenoptera in general, higher forms of sociality are more likely to occur in tropical than temperate environments.<ref>{{cite journal|last1=Toth |first1=A. L. |last2=Robinson |first2=G. E. |date=2009-01-01 |title=Evo-Devo and the evolution of social behavior: Brain gene expression analyses in social insects |journal=Cold Spring Harbor Symposia on Quantitative Biology |volume=74 |pages=419–426 |doi=10.1101/sqb.2009.74.026 |pmid=19850850 |doi-access=free}}</ref> Similarly, social transitions within ], where eusociality has been gained and lost multiple times, are correlated with periods of climatic warming. Social behavior in facultative social bees is often reliably predicted by ecological conditions, and switches in behavioral type have been experimentally induced by translocating offspring of solitary or social populations to warm and cool climates. In ''H. rubicundus'', females produce a single brood in cooler regions and two or more broods in warmer regions, so the former populations are solitary while the latter are social.<ref name="Yanega 1993">{{cite journal|title=Environmental influences on male production and social structure in ''Halictus rubicundus'' (Hymenoptera: Halictidae) |journal=Insectes Sociaux |date=1993 |pages=169–180 |volume=40 |issue=2 |doi=10.1007/BF01240705 |first=D. |last=Yanega |s2cid=44934383}}</ref> In another species of sweat bees, ''L. calceatum'', social phenotype has been predicted by altitude and micro-habitat composition, with social nests found in warmer, sunnier sites, and solitary nests found in adjacent, cooler, shaded locations. Facultatively social bee species, however, which comprise the majority of social bee diversity, have their lowest diversity in the tropics, being largely limited to temperate regions.<ref>{{cite journal|last1=Shell |first1=Wyatt A. |last2=Rehan |first2=Sandra M. |date=2017-07-24 |title=Behavioral and genetic mechanisms of social evolution: insights from incipiently and facultatively social bees |journal=Apidologie |pages=13–30 |doi=10.1007/s13592-017-0527-1 |issn=0044-8435 |volume=49 |doi-access=free}}</ref>
| volume = 256
| pages = 445–448
| year = 2002
| doi = 10.1017/s0952836902000481
}}</ref> supporting the plasticity of eusocial traits in response to environmental cues.


=== Multilevel selection === === Multilevel selection ===


{{further|Group selection}}
Once pre-adaptations such as group formation, nest building, high cost of dispersal, and morphological variation are present, between-group competition has been cited as a quintessential force in the transition to advanced eusociality. Because the hallmarks of eusociality will produce an extremely altruistic society, such groups will out-reproduce their less cooperative competitors, eventually eliminating all non-eusocial groups from a species.


Once pre-adaptations such as group formation, nest building, high cost of dispersal, and morphological variation are present, ] has been suggested as a driver of the transition to advanced eusociality. M. A. Nowak, C. E. Tarnita, and ] proposed in 2010 that since eusociality produces an extremely altruistic society, eusocial groups should out-reproduce their less cooperative competitors, eventually eliminating all non-eusocial groups from a species.<ref>{{cite journal |last1=Nowak |first1=M. A. |last2=Tarnita |first2=C. E. |last3=Wilson |first3=E. O. |title=The evolution of eusociality |journal=] |date=2010 |volume=466 |issue=7310 |pages=1057–1062 |doi=10.1038/nature09205 |pmid=20740005 |pmc=3279739 |bibcode=2010Natur.466.1057N}}</ref> Multilevel selection has been heavily criticized for its conflict with the ] theory.<ref>{{cite journal |last=Abbot |first=Patrick |title=Inclusive fitness theory and eusociality |journal=] |volume=471 |issue=7339 |pages=E1–E4 |year=2011 |doi=10.1038/nature09831 |pmid=21430721 |display-authors=etal |pmc=3836173 |bibcode=2011Natur.471E...1A}}</ref>
Multilevel selection has been heavily criticized by some for its conflict with the ] theory.<ref>{{cite journal
| author = Abbot, Patrick, et al.
| title = Inclusive fitness theory and eusociality
| journal = ]
| volume = 471
| issue = 7339
| pages = E1-E4
| publisher = Nature Publishing Group, a division of Macmillan Publishers Limited.
| year = 2011
| url = http://dx.doi.org/10.1038/nature09831
| accessdate = 2013-11-18}}</ref>


=== Reversal to solitarity ===
== Physiological and developmental mechanisms ==


A reversal to solitarity is an evolutionary phenomenon in which descendants of a eusocial group evolve solitary behavior once again. Bees have been model organisms for the study of reversal to solitarity, because of the diversity of their social systems. Each of the four origins of eusociality in bees was followed by at least one reversal to solitarity, giving a total of at least nine reversals.<ref name="Michener 1969 299–342"/><ref name="Gadagkar 1993 215–216"/> In a few species, solitary and eusocial colonies appear simultaneously in the same population, and different populations of the same species may be fully solitary or eusocial.<ref name="Yanega 1993" /> This suggests that eusociality is costly to maintain, and can only persist when ecological variables favor it. Disadvantages of eusociality include the cost of investing in non-reproductive offspring, and an increased risk of disease.<ref>{{cite journal |last1=Zara |first1=Fernando |last2=Balestieri |first2=Jose |title=Behavioural Catalogue of Polistes versicolor Olivier (Vespidae: Polistinae) Post-emergent Colonies |journal=Naturalia |volume=25 |year=2000 |pages=301–319}}</ref>
An understanding of the physiological causes and consequences of the eusocial condition has been somewhat slow; nonetheless, major advancements have been made in learning more about the mechanistic and developmental processes that lead to eusociality.<ref name=Fletcher1985>{{cite journal|last=Fletcher|first=D.|coauthors=Ross K.|title=Regulation of Reproduction in Eusocial Hymenoptera|journal=Annual Review of Entomology|year=1985|volume=30|pages=319–343}}</ref>


All reversals to solitarity have occurred among primitively eusocial groups; none have followed the emergence of advanced eusociality. The "point of no return" hypothesis posits that the morphological differentiation of reproductive and non-reproductive castes prevents highly eusocial species such as the honeybee from reverting to the solitary state.<ref name="Interspecific and conspecific colon"/>
=== Involvement of pheromones ===


== Physiology and development ==
] are thought to play an important role in the physiological mechanisms underlying the development and maintenance of eusociality. The most well-studied queen pheromone system in social insects is that of the honey bee '']''. Queen mandibular glands were found to produce a mixture of five compounds, three ] and two ], which have been found to control workers.<ref name=Vargo1999>{{cite journal|last=Vargo|first=E.|title=Reproductive development and ontogeny or queen pheromone production in the fire ant ''Solenopsis invicta''|journal=Physiological Entomology|year=1999|volume=24|pages=370–376}}</ref> Mandibular gland extracts inhibit workers from constructing queen cells in which new queens are reared which can delay the hormonally based behavioral development of workers and can suppress ovarian development in workers.<ref name=Fletcher1985 /><ref name=Vargo1999 /> Both behavioral effects mediated by the nervous system often leading to recognition of queens (]) and physiological effects on the reproductive and endocrine system (]) are attributed to the same pheromones. These pheromones volatilize or are deactivated within thirty minutes, allowing workers to respond rapidly to the loss of their queen.<ref name=Fletcher1985 />


=== Pheromones ===
The levels of two of the aliphatic compounds increase rapidly in virgin queens within the first week after ] (emergence from the pupal case), which is consistent with their roles as sex attractants during the mating flight.<ref name=Vargo1999 /> It is only after a queen is mated and begins laying eggs, however, that the full blend of compounds is made.<ref name=Vargo1999 /> The physiological factors regulating reproductive development and pheromone production are unknown.


] play an important role in the physiological mechanisms of eusociality. Enzymes involved in the production and perception of pheromones were important for the emergence of eusociality within both termites and hymenopterans.<ref name="Harrison2018">{{cite journal|last1=Harrison |first1=Mark C. |last2=Jongepier |first2=Evelien |last3=Robertson |first3=Hugh M. |last4=Arning |first4=Nicolas |last5=Bitard-Feildel |first5=Tristan |display-authors=etal |title=Hemimetabolous genomes reveal molecular basis of termite eusociality |journal=] |date=2018 |volume=2 |issue=3 |pages=557–566 |doi=10.1038/s41559-017-0459-1 |pmid=29403074 |pmc=6482461 |bibcode=2018NatEE...2..557H }}</ref> The best-studied queen pheromone system in social insects is that of the honey bee '']''. Queen mandibular glands produce a mixture of five compounds, three ] and two ], which control workers.<ref name=Vargo1999>{{cite journal |last=Vargo |first=E. |title=Reproductive development and ontogeny or queen pheromone production in the fire ant ''Solenopsis invicta'' |journal=Physiological Entomology |year=1999 |volume=24 |issue=4 |pages=370–376 |doi=10.1046/j.1365-3032.1999.00153.x |s2cid=84103230}}</ref> Mandibular gland extracts inhibit workers from constructing queen cells, which can delay the hormonally based behavioral development of workers and suppress their ovarian development.<ref name=Fletcher1985/><ref name=Vargo1999/> Both behavioral effects mediated by the nervous system often leading to recognition of queens (]) and physiological effects on the reproductive and endocrine system (]) are attributed to the same pheromones. These pheromones volatilize or are deactivated within thirty minutes, allowing workers to respond rapidly to the loss of their queen.<ref name=Fletcher1985>{{cite journal |last1=Fletcher |first1=D. |last2=Ross |first2=K. |title=Regulation of Reproduction in Eusocial Hymenoptera |journal=] |year=1985 |volume=30 |pages=319–343 |doi=10.1146/annurev.ento.30.1.319}}</ref>
In several ant species, reproductive activity has also been associated with pheromone production by queens.<ref name=Vargo1999 /> In general, mated egg laying queens are attractive to workers whereas young winged virgin queens, which are not yet mated, elicit little or no response. However, very little is known about when pheromone production begins during the initiation of reproductive activity or about the physiological factors regulating either reproductive development or queen pheromone production in ants.<ref name=Vargo1999 />


The levels of two of the aliphatic compounds increase rapidly in virgin queens within the first week after ], consistent with their roles as sex attractants during the mating flight.<ref name=Vargo1999/> Once a queen is mated and begins laying eggs, she starts producing the full blend of compounds.<ref name=Vargo1999/> In several ant species, reproductive activity is associated with pheromone production by queens.<ref name=Vargo1999/> Mated egg-laying queens are attractive to workers, whereas young winged virgin queens elicit little or no response.<ref name=Vargo1999/>
Among ants, the queen pheromone system of the fire ant '']'' is particularly well studied. Both releaser and primer pheromones have been demonstrated in this species.<ref name=Vargo1999 /> A queen recognition (releaser) hormone is stored in the poison sac along with three other compounds. These compounds were reported to elicit a behavioral response from workers.<ref name=Vargo1999 /> Several primer effects have also been demonstrated. Pheromones initiate reproductive development in new winged females, called female sexuals.<ref name=Vargo1999 /> These chemicals also inhibit workers from rearing male and female sexuals, suppress egg production in other queens of multiple queen colonies and cause workers to execute excess queens.<ref name=Fletcher1985 /><ref name=Vargo1999 /> The action of these pheromones together maintains the eusocial phenotype which includes one queen supported by sterile workers and sexually active males (]). In queenless colonies that lack such pheromones, winged females will quickly shed their wings, develop ovaries and lay eggs. These virgin replacement queens assume the role of the queen and even start to produce queen pheromones.<ref name=Vargo1999 /> There is also evidence that queen weaver ants '']'' have a variety of ] glands that produce pheromones, which prevent workers from laying reproductive eggs.<ref name=Fletcher1985 />


]s: three queen pheromones help to create and maintain the eusocial state of the colony. Loss of a primer pheromone triggers the development of replacement queens (dashed lines).<ref name=Vargo1999/><ref name=Fletcher1985/>]]
The mode of action of inhibitory pheromones which prevent the development of eggs in workers has been convincingly demonstrated in the bumble bee '']''.<ref name=Fletcher1985 /> In this species, pheromones suppress activity of the ] and ] (JH) secretion. The corpora allata is an endocrine gland that produces JH, a group of hormones that regulate many aspects of insect physiology.<ref name=Feyereisen1981>{{cite journal|last=Feyereisen|first=R.|coauthors=Tobe S.|title=A rapid partition assay for routine analysis of juvenile hormone released by insect corpora allata|journal=Analytical Biochemistry|year=1981|volume=111|pages=372–375}}</ref> With low JH, eggs do not mature. Similar inhibitory effects of lowering JH were seen in halictine bees and polistine wasps, but not in honey bees.<ref name=Fletcher1985 />


Among ants, the queen pheromone system of the fire ant '']'' includes both releaser and primer pheromones. A queen recognition (releaser) pheromone is stored in the poison sac along with three other compounds. These compounds elicit a behavioral response from workers. Several primer effects have also been demonstrated. Pheromones initiate reproductive development in new winged females, called female sexuals.<ref name=Vargo1999/> These chemicals inhibit workers from rearing male and female sexuals, suppress egg production in other queens of multiple queen colonies, and cause workers to execute excess queens.<ref name=Vargo1999/><ref name=Fletcher1985/> These pheromones maintain the eusocial phenotype, with one queen supported by sterile workers and sexually active males (]). In queenless colonies, the lack of queen pheromones causes winged females to quickly shed their wings, develop ovaries and lay eggs. These virgin replacement queens assume the role of the queen and start to produce queen pheromones.<ref name=Vargo1999/> Similarly, queen weaver ants '']'' have ] glands that produce pheromones which prevent workers from laying reproductive eggs.<ref name=Fletcher1985/>
=== Other strategies ===


Similar mechanisms exist in the eusocial wasp '']''. For a queen to dominate all the workers, usually numbering more than 3000 in a colony, she signals her dominance with pheromones. The workers regularly lick the queen while feeding her, and the air-borne ] from the queen's body alerts those workers of her dominance.<ref name= "Carpenter">{{cite journal |title=Phylogenetic relationships and classification of the Vespinae (Hymenoptera: Vespidae) |last=Carpenter |first=J.M |date=1987 |journal=] |doi=10.1111/j.1365-3113.1987.tb00213.x |pages=413–431 |volume=12 |issue=4 |bibcode=1987SysEn..12..413C |s2cid=9388017}}</ref>
A variety of strategies in addition to the use of pheromones have evolved that give the queens of different species of social insects a measure of reproductive control over their nest mates.<ref name=Fletcher1985 /> In many ] wasp colonies, monogamy is established soon after colony formation by physical dominance interactions among foundresses of the colony including biting, chasing and food soliciting.<ref name=Fletcher1985 /> Such interactions created a dominance hierarchy headed by individuals with the greatest ovarian development.<ref name=Fletcher1985 /> Larger, older individuals often have an advantage during the establishment of dominance hierarchies.<ref name=Fletcher1985 /> The rank of subordinates is positively correlated with the degree of ovarian development and the highest ranking individual usually becomes queen if the established queen disappears.<ref name=Fletcher1985 /> Workers do not ] when queens are present because of a variety of reasons: colonies tend to be small enough that queens can effectively dominate workers, queens practice selective ] or egg eating, or the flow of nutrients favors queen over workers and queens rapidly lay eggs in new or vacated cells.<ref name=Fletcher1985 />


The mode of action of inhibitory pheromones which prevent the development of eggs in workers has been demonstrated in the bumble bee '']''.<ref name=Fletcher1985/> The pheromones suppress activity of the endocrine gland, the ], stopping it from secreting ].<ref name=Feyereisen1981>{{cite journal |last1=Feyereisen |first1=R. |last2=Tobe |first2=S. |title=A rapid partition assay for routine analysis of juvenile hormone released by insect corpora allata |journal=Analytical Biochemistry |year=1981 |volume=111 |issue=2 |pages=372–375 |doi=10.1016/0003-2697(81)90575-3 |pmid=7247032}}</ref> With low juvenile hormone, eggs do not mature. Similar inhibitory effects of lowering juvenile hormone were seen in halictine bees and polistine wasps, but not in honey bees.<ref name=Fletcher1985/>
In primitively eusocial bees (where castes are morphologically similar and colonies usually small and short-lived), queens frequently nudge their nest mates and then burrow back down into the nest.<ref name=Fletcher1985 /> This behavior draws workers into the lower part of the nest where they may respond to stimuli for cell construction and maintenance.<ref name=Fletcher1985 /> Being nudged by the queen may play a role in inhibiting ovarian development and this form of queen control is supplemented by oophagy of worker laid eggs.<ref name=Fletcher1985 /> Furthermore, temporally discrete production of workers and gynes (actual or potential queens) can cause size dimorphisms between different castes as size is strongly influenced by the season during which the individual is reared. In many wasp species worker caste determination is characterized by a temporal pattern in which workers precede non-workers of the same generation.<ref name=Hunt2010>{{cite journal|last=Hunt|first=J.|coauthors=Wolschin F., Henshaw M., Newman T., Toth A., Amdam G.|title=Differential gene expression and protein abundance evince ontogenetic bias toward castes in a primitively eusocial wasp|journal=PLOS one|year=2010}}</ref> In some cases, for example in the bumble bee, queen control weakens late in the season and the ovaries of workers develop to an increasing extent.<ref name=Fletcher1985 /> The queen attempts to maintain her dominance by aggressive behavior and by eating worker laid eggs; her aggression is often directed towards the worker with the greatest ovarian development.<ref name=Fletcher1985 />


=== Other mechanisms ===
In highly eusocial wasps (where castes are morphologically dissimilar), both the quantity and quality of food seem to be important for caste differentiation.<ref name=Fletcher1985 /> Recent studies suggest that differential larval nourishment may be the environmental trigger for larval divergence into one of two developmental classes destined to become either a worker or a gyne.<ref name=Hunt2010 /> When larvae are nourished with ], which is secreted by workers, they differentiate into queens. This jelly seems to contain a specific protein, designated as royalactin, which increases body size, promotes ovary development and shortens the developmental time period.<ref>{{cite journal|last=Kamakura|first=Masaki|title=Royalactin induces queen differentiation in honeybees|journal=Nature|date=May 2011|volume=473|pages=478–483}}</ref> Furthermore, the differential expression in Polistes of larvae genes and proteins, also differentially expressed during queen versus caste development in honey bees, indicate that regulatory mechanisms may occur very early in development.<ref name=Hunt2010 />


A variety of other mechanisms give queens of different species of social insects a measure of reproductive control over their nest mates. In many '']'' wasps, monogamy is established soon after colony formation by physical dominance interactions among foundresses of the colony including biting, chasing, and food soliciting. Such interactions create a dominance hierarchy headed by larger, older individuals with the greatest ovarian development. The rank of subordinates is correlated with the degree of ovarian development.<ref name=Fletcher1985/> Workers do not ] when queens are present, for a variety of reasons: colonies tend to be small enough that queens can effectively dominate workers; queens practice selective ]; the flow of nutrients favors queen over workers; and queens rapidly lay eggs in new or vacated cells.<ref name=Fletcher1985/>
== Definition debates ==
]
Subsequent to Wilson's original definition, other authors have sought to narrow or expand the definition of eusociality by focusing on the nature and degree of the division of labor, which was not originally specified. A narrower and more widely accepted definition specifies the requirement for irreversibly distinct behavioral groups or castes (with respect to sterility and/or other features). Such a definition, however, excludes social ]s, like the mole rats, and some Hymenoptera species, like the ].<ref name=Crespi1995 /> For example, depending on the availability of resources and the condition of the environment, mole rats can change between different types of social behaviors.<ref name="O'Riain and Faulkes, (2008)">{{cite journal | last1 = O'Riain | first1 = M.J. | last2 = Faulkes | first2 = C. G. | year = 2008 | title = African mole rats: eusociality, relatedness and ecological constraints | url = http://www.springerlink.com/content/q11245457q771m3t/ | journal = Ecology of Social Evolution | volume = | issue = | pages = 207–223 }}</ref> In 2005, according to Wilson and Hölldobler, these types of animals would be considered primitively eusocial, which is different from eusocial, since the labor division is not permanent.<ref name=Wilson2005 /> A broader definition, on the other hand, would include mole rats because it allows for any temporary division of labor or non-random distribution of reproductive success to constitute eusociality.


In primitively eusocial bees (where castes are morphologically similar and colonies are small and short-lived), queens frequently nudge their nest mates and then burrow back down into the nest. This draws workers into the lower part of the nest where they may respond to stimuli for cell construction and maintenance.<ref name=Fletcher1985/> Being nudged by the queen may help to inhibit ovarian development; in addition, the queen eats any eggs laid by workers.<ref name=Fletcher1985/> Furthermore, temporally discrete production of workers and ]s (actual or potential queens) can cause size dimorphisms between different castes, as size is strongly influenced by the season during which the individual is reared. In many wasps, worker caste is determined by a temporal pattern in which workers precede non-workers of the same generation.<ref name=Hunt2010>{{cite journal |last1=Hunt |first1=J. |last2=Wolschin |first2=F. |last3=Henshaw |first3=M. |last4=Newman |first4=T. |last5=Toth |first5=A. |last6=Amdam |first6=G. |title=Differential gene expression and protein abundance evince ontogenetic bias toward castes in a primitively eusocial wasp |journal=] |date=17 May 2010 |doi=10.1371/journal.pone.0010674 |volume=5 |issue=5 |pages=e10674 |pmid=20498859 |pmc=2871793 |bibcode=2010PLoSO...510674H |doi-access=free}}</ref> In some cases, for example in bumblebees, queen control weakens late in the season, and the ovaries of workers develop.<ref name=Fletcher1985/> The queen attempts to maintain her dominance by aggressive behavior and by eating worker-laid eggs; her aggression is often directed towards the worker with the greatest ovarian development.<ref name=Fletcher1985/>
In 2010, Nowak, Tarnita and Wilson challenged the theoretical explanation of the evolution of eusociality. Based on the concept of ], the ] theory considers the relatedness of individuals to be one of the most important factors that lead to eusociality. This brought up issues like the irrelevance of haplodiploidy and maternal control. Nowak et al. argued that the kin selection theory is inadequate because it can explain only a subset of eusocial populations due to its assumptions (i.e. “all interactions must be additive and pairwise” which excludes any interaction that involves more than two players). To them, the standard natural selection theory, which is a more general approach than the current explanation of eusociality, is the appropriate theory to use since it explains the same phenomenon and it would work for a larger number of eusocial cases. It also requires simpler mathematical calculations when explaining the evolution of eusociality.<ref name=NTW /> This paper led to a large influx of publications that refuted Nowak et al.’s ideas and supported the validity and specificity of the kin selection theory. For example, Trivers and Hare studied the haplodiploid Hymenoptera and they found that the workers were able to win the parent-offspring conflict, countering the parents’ best interest and selecting the outcome that has the greater benefit for the workers (i.e. reproductive success with shares higher relatedness to workers than the queen).<ref>{{cite journal|last=Trivers|first=RL|coauthors=Hare H|title=Haploidploidy and the Evolution of the Social Insect|journal=Science|date=23 January 1976|volume=191|issue=4224|pages=249–263}}</ref> This refuted Nowak et al.’s defense that future offspring development could be based solely on the fitness of parents.


In highly eusocial wasps (where castes are morphologically dissimilar), both the quantity and quality of food are important for caste differentiation.<ref name=Fletcher1985/> Recent studies in wasps suggest that differential larval nourishment may be the environmental trigger for larval divergence into workers or gynes.<ref name=Hunt2010/> All honey bee larvae are initially fed with ], which is secreted by workers, but normally they are switched over to a diet of pollen and honey as they mature; if their diet is exclusively royal jelly, they grow larger than normal and differentiate into queens. This jelly contains a specific protein, royalactin, which increases body size, promotes ovary development, and shortens the developmental time period.<ref>{{cite journal |last=Kamakura |first=Masaki |title=Royalactin induces queen differentiation in honeybees |journal=] |date=May 2011 |volume=473 |pages=478–483 |doi=10.1038/nature10093 |pmid=21516106 |issue=7348 |bibcode=2011Natur.473..478K |hdl=2123/10940 |s2cid=2060453 |hdl-access=free}}</ref> The differential expression in ''Polistes'' of larval genes and proteins (also differentially expressed during queen versus caste development in honey bees) indicates that regulatory mechanisms may operate very early in development.<ref name=Hunt2010/>
Another debate focused on whether or not humans may be considered eusocial.<ref>{{cite journal | last1 = Foster | first1 = Kevin R. | last2 = Ratnieks | first2 = Francis L.W. | year = 2005 | title = A new eusocial vertebrate? | url = http://www.zoo.ox.ac.uk/group/foster/FosterRatnieksTREE2005.pdf | format = PDF | journal = TRENDS in Ecology and Evolution | volume = 20 | issue = 7| pages = 363–364 }}</ref> In Wilson's latest book, 2012's ''The Social Conquest of the Earth'', he refers to humans as a species of eusocial ape. He supports his reasoning by stating our eusocial similarities to ants. Humans also fall under Wilson's original criteria of eusociality (division of labor, overlapping generations, and cooperative care of young including ones that are not their own). Through cooperation and teamwork, ants and humans gain a type of “superpower” that is unavailable to other social animals that have failed to make the leap from social to eusocial. Eusociality creates the superorganism.<ref>{{cite book|last=Wilson|first=Edward O.|title=The Social Conquest of Earth|year=2012|publisher=Liveright Pub. Corp|location=New York}}</ref> This has caused conflict amongst biologists as not all believe that a term reserved for invertebrates can explain humanity. Others do not believe that humans are eusocial because humans make the decision to be "]" (i.e. babysitting a non-related child) whereas eusociality is a behavioral strategy that is not specifically selected by an individual.

== In popular culture ==

]'s 2003 science fiction novel '']'' imagines a human eusocial organisation founded in ], in which most individuals are subject to reproductive repression.<ref>{{cite journal |last1=Murphy |first1=Graham |title='Considering Her Ways': In(ter)secting matriarchal utopias |journal=Science Fiction Studies |date=July 2008 |volume=35 |issue=2 |pages=266–280 |url=https://www.researchgate.net/publication/283384074}}</ref>
Harold Fromm, reviewing ''Groping for Groups'' by E. O. Wilson and others in '']'', asks whether Wilson's stated "wish" for humans to bring about "a permanent paradise for human beings" would mean "to be group-selected in factories in the style of ]'s '']''.<ref name="Fromm 2013">{{cite journal |last=Fromm |first=Harold |title=Review of Groping for Groups, by Edward O. Wilson, Jonathan Haidt, Steven Mithen, Steven Pinker, and Richard Dawkins |journal=] |volume=65 |issue=4 |year=2013 |pages=652–658 |jstor=43489291}}</ref>


== See also == == See also ==

* ]
{{cols}}
* ] * ]
* ] * ]
* ]
* ]
* ] * ]
* ]
* ] * ]
* ] * ]
Line 164: Line 246:
** ] ** ]
* ] * ]
{{colend}}
* ]


== References == == References ==

{{reflist}}
{{reflist|28em}}


== External links == == External links ==

* *
* *


{{Eusociality}}
{{Ethology}}
{{Sociobiology}} {{Sociobiology}}
{{Collective animal behaviour}} {{Collective animal behaviour}}

Latest revision as of 18:59, 4 November 2024

Highest level of animal sociality a species can attain

Co-operative brood rearing, seen here in honeybees, is a condition of eusociality.

Eusociality (Greek εὖ eu "good" and social) is the highest level of organization of sociality. It is defined by the following characteristics: cooperative brood care (including care of offspring from other individuals), overlapping generations within a colony of adults, and a division of labor into reproductive and non-reproductive groups. The division of labor creates specialized behavioral groups within an animal society, sometimes called castes. Eusociality is distinguished from all other social systems because individuals of at least one caste usually lose the ability to perform behaviors characteristic of individuals in another caste. Eusocial colonies can be viewed as superorganisms.

Eusociality has evolved among the insects, crustaceans, trematoda and mammals. It is most widespread in the Hymenoptera (ants, bees, and wasps) and in Blattodea (termites). A colony has caste differences: queens and reproductive males take the roles of the sole reproducers, while soldiers and workers work together to create and maintain a living situation favorable for the brood. Queens produce multiple queen pheromones to create and maintain the eusocial state in their colonies; they may also eat eggs laid by other females or exert dominance by fighting. There are two eusocial rodents: the naked mole-rat and the Damaraland mole-rat. Some shrimps, such as Synalpheus regalis, are eusocial. E. O. Wilson and others have claimed that humans have evolved a weak form of eusociality. It has been suggested that the colonial and epiphytic staghorn fern, too, may make use of a primitively eusocial division of labor.

History

Suzanne Batra introduced the term "eusocial" after studying nesting in Halictid bees including Halictus latisignatus, pictured.

The term "eusocial" was introduced in 1966 by Suzanne Batra, who used it to describe nesting behavior in Halictid bees, on a scale of subsocial/solitary, colonial/communal, semisocial, and eusocial, where a colony is started by a single individual. Batra observed the cooperative behavior of the bees, males and females alike, as they took responsibility for at least one duty (i.e., burrowing, cell construction, oviposition) within the colony. The cooperativeness was essential as the activity of one labor division greatly influenced the activity of another. Eusocial colonies can be viewed as superorganisms, with individual castes being analogous to different tissue or cell types in a multicellular organism; castes fulfill a specific role that contributes to the functioning and survival of the whole colony, while being incapable of independent survival outside the colony.

In 1969, Charles D. Michener further expanded Batra's classification with his comparative study of social behavior in bees. He observed multiple species of bees (Apoidea) in order to investigate the different levels of animal sociality, all of which are different stages that a colony may pass through. Eusociality, which is the highest level of animal sociality a species can attain, specifically had three characteristics that distinguished it from the other levels:

  1. Egg-layers and worker-like individuals among adult females (division of labor)
  2. The overlap of generations (mother and adult offspring)
  3. Cooperative work on the cells of the bees' honeycomb
Weaver ants, here collaborating to pull nest leaves together, can be considered eusocial, as they have a permanent division of labor.

E. O. Wilson extended the terminology to include other social insects, such as ants, wasps, and termites. Originally, it was defined to include organisms (only invertebrates) that had the following three features:

  1. Reproductive division of labor (with or without sterile castes)
  2. Overlapping generations
  3. Cooperative care of young

Eusociality was then discovered in a group of chordates, the mole-rats. Further research distinguished another possibly important criterion for eusociality, "the point of no return". This is characterized by having individuals fixed into one behavioral group, usually before reproductive maturity. This prevents them from transitioning between behavioral groups, and creates a society with individuals truly dependent on each other for survival and reproductive success. For many insects, this irreversibility has changed the anatomy of the worker caste, which is sterile and provides support for the reproductive caste.

Diversity

Most eusocial societies exist in arthropods, while a few are found in mammals. Some ferns may exhibit a primitive form of eusocial behavior.

In insects

See also: Sexual selection in social insects and Identity in social insects

Eusociality has evolved multiple times in different insect orders, including hymenopterans, termites, thrips, aphids, and beetles.

In hymenoptera

Swarming Iridomyrmex purpureus ants. The young queens are black, winged, and much larger than the wingless workers.

The order Hymenoptera contains the largest group of eusocial insects, including ants, bees, and wasps—divided into castes: reproductive queens, drones, more or less sterile workers, and sometimes also soldiers that perform specialized tasks. In the well-studied social wasp Polistes versicolor, dominant females perform tasks such as building new cells and ovipositing, while subordinate females tend to perform tasks like feeding the larvae and foraging. The task differentiation between castes can be seen in the fact that subordinates complete 81.4% of the total foraging activity, while dominants only complete 18.6% of the total foraging. Eusocial species with a sterile caste are sometimes called hypersocial.

While only a moderate percentage of species in bees (families Apidae and Halictidae) and wasps (Crabronidae and Vespidae) are eusocial, nearly all species of ants (Formicidae) are eusocial. Some major lineages of wasps are mostly or entirely eusocial, including the subfamilies Polistinae and Vespinae. The corbiculate bees (subfamily Apinae of family Apidae) contain four tribes of varying degrees of sociality: the highly eusocial Apini (honey bees) and Meliponini (stingless bees), primitively eusocial Bombini (bumble bees), and the mostly solitary or weakly social Euglossini (orchid bees). Eusociality in these families is sometimes managed by a set of pheromones that alter the behavior of specific castes in the colony. These pheromones may act across different species, as observed in Apis andreniformis (black dwarf honey bee), where worker bees responded to queen pheromone from the related Apis florea (red dwarf honey bee). Pheromones are sometimes used in these castes to assist with foraging. Workers of the Australian stingless bee Tetragonula carbonaria, for instance, mark food sources with a pheromone, helping their nest mates to find the food.

Myrmecocystus honeypot ants, showing the repletes or plerergates, their abdomens swollen to store honey (top), with ordinary workers (bottom)

Reproductive specialization generally involves the production of sterile members of the species, which carry out specialized tasks to care for the reproductive members. Individuals may have behavior and morphology modified for group defense, including self-sacrificing behavior. For example, members of the sterile caste of the honeypot ants such as Myrmecocystus fill their abdomens with liquid food until they become immobile and hang from the ceilings of the underground nests, acting as food storage for the rest of the colony. Not all social insects have distinct morphological differences between castes. For example, in the Neotropical social wasp Synoeca surinama, caste ranks are determined by social displays in the developing brood. These castes are sometimes further specialized in their behavior based on age, as in Scaptotrigona postica workers. Between approximately 0–40 days old, the workers perform tasks within the nest such as provisioning cell broods, colony cleaning, and nectar reception and dehydration. Once older than 40 days, S. postica workers move outside the nest for colony defense and foraging.

In Lasioglossum aeneiventre, a halictid bee from Central America, nests may be headed by more than one female; such nests have more cells, and the number of active cells per female is correlated with the number of females in the nest, implying that having more females leads to more efficient building and provisioning of cells. In similar species with only one queen, such as Lasioglossum malachurum in Europe, the degree of eusociality depends on the clime in which the species is found.

In termites

Termites live in large nests, with queen, king, soldier (red heads), and worker (pale heads) castes.

Termites (order Blattodea, infraorder Isoptera) make up another large portion of highly advanced eusocial animals. The colony is differentiated into various castes: the queen and king are the sole reproducing individuals; workers forage and maintain food and resources; and soldiers defend the colony against ant attacks. The latter two castes, which are sterile and perform highly specialized, complex social behaviors, are derived from different stages of pluripotent larvae produced by the reproductive caste. Some soldiers have jaws so enlarged (specialized for defense and attack) that they are unable to feed themselves and must be fed by workers.

In beetles

Austroplatypus incompertus is a species of ambrosia beetle native to Australia, and is the first beetle (order Coleoptera) to be recognized as eusocial. This species forms colonies in which a single female is fertilized, and is protected by many unfertilized females, which serve as workers excavating tunnels in trees. This species has cooperative brood care, in which individuals care for juveniles that are not their own.

In gall-inducing insects

Kladothrips rugosa, a gall-forming thrips (larva on left, adult on right) with galls (centre) on Acacia leaves. Its soldier caste defends the colony in its gall fortress.

Some gall-inducing insects, including the gall-forming aphid, Pemphigus spyrothecae (order Hemiptera), and thrips such as Kladothrips (order Thysanoptera), are described as eusocial. These species have very high relatedness among individuals due to their asexual reproduction (sterile soldier castes being clones produced by parthenogenesis), but the gall-inhabiting behavior gives these species a defensible resource. They produce soldier castes for fortress defense and protection of the colony against predators, kleptoparasites, and competitors. In these groups, eusociality is produced by both high relatedness and by living in a restricted, shared area.

In crustaceans

Eusociality has evolved in three different lineages in the colonial crustacean genus Synalphaeus. S. regalis, S. microneptunus, S. filidigitus, S. elizabethae, S. chacei, S. riosi, S. duffyi, and S. cayoneptunus are the eight recorded species of parasitic shrimp that rely on fortress defense and live in groups of closely related individuals in tropical reefs and sponges. They live eusocially with a single breeding female, and a large number of male defenders armed with enlarged snapping claws. There is a single shared living space for the colony members, and the non-breeding members act to defend it.

The fortress defense hypothesis additionally points out that because sponges provide both food and shelter, there is an aggregation of relatives (because the shrimp do not have to disperse to find food), and much competition for those nesting sites. Being the target of attack promotes a good defense system (soldier caste); soldiers promote the fitness of the whole nest by ensuring safety and reproduction of the queen.

Eusociality offers a competitive advantage in shrimp populations. Eusocial species are more abundant, occupy more of the habitat, and use more of the available resources than non-eusocial species.

In trematodes

The trematodes are a class of parasitic flatworm, also known as flukes. One species, Haplorchis pumilio, has evolved eusociality involving a colony creating a class of sterile soldiers. One fluke invades a host and establishes a colony of dozens to thousands of clones that work together to take it over. Since rival trematode species can invade and replace the colony, it is protected by a specialized caste of sterile soldier trematodes. Soldiers are smaller, more mobile, and develop along a different pathway than sexually mature reproductives. One difference is that a soldier's mouthparts (pharynx) is five times as big as those of the reproductives. They make up nearly a quarter of the volume of the soldier. These soldiers do not have a germinal mass, never metamorphose to be reproductive, and are, therefore, obligately sterile. Soldiers are readily distinguished from the immature and mature reproductive worms. Soldiers are more aggressive than reproductives, attacking heterospecific trematodes that infect their host in vitro. H. pumilio soldiers do not attack conspecifics from other colonies. The soldiers are not evenly distributed throughout the host body. They are found in the highest numbers in the basal visceral mass, where competing trematodes tend to multiply during the early phase of infection. This strategic positioning allows them to effectively defend against invaders, similar to how soldier distribution patterns are seen in other animals with defensive castes. They "appear to be an obligately sterile physical caste, akin to that of the most advanced social insects".

In nonhuman mammals

Model of naked mole-rat burrow with soldiers, workers, and queen, a social structure similar to the castes of the eusocial insects

Among mammals, two species in the rodent group Phiomorpha are eusocial, the naked mole-rat (Heterocephalus glaber) and the Damaraland mole-rat (Fukomys damarensis), both of which are highly inbred. Usually living in harsh or limiting environments, these mole-rats aid in raising siblings and relatives born to a single reproductive queen. However, this classification is controversial owing to disputed definitions of 'eusociality'. To avoid inbreeding, mole rats sometimes outbreed and establish new colonies when resources are sufficient. Most of the individuals cooperatively care for the brood of a single reproductive female (the queen) to which they are most likely related. Thus, it is uncertain whether mole rats are truly eusocial, since their social behavior depends largely on their resources and environment.

Some mammals in the Carnivora and Primates have eusocial tendencies, especially meerkats (Suricata suricatta) and dwarf mongooses (Helogale parvula). These show cooperative breeding and marked reproductive skews. In the dwarf mongoose, the breeding pair receives food priority and protection from subordinates and rarely has to defend against predators.

In humans

Further information: Group selection

Scientists have debated whether humans are prosocial or eusocial. Edward O. Wilson called humans eusocial apes, arguing for similarities to ants, and observing that early hominins cooperated to rear their children while other members of the same group hunted and foraged. Wilson and others argued that through cooperation and teamwork, ants and humans form superorganisms. Wilson's claims were vigorously rejected by critics of group selection theory, which grounded Wilson's argument, and because human reproductive labor is not divided between castes.

Though controversial, it has been suggested that male homosexuality and female menopause could have evolved through kin selection. This would mean that humans sometimes exhibit a type of alloparental behavior known as "helpers at the nest", with juveniles and sexually mature adolescents helping their parents raise subsequent broods, as in some birds, some non-eusocial bees, and meerkats. These species are not eusocial: they do not have castes, and helpers reproduce on their own if given the opportunity.

In plants

The staghorn fern Platycerium bifurcatum may display a simple form of eusociality.

One plant, the epiphytic staghorn fern, Platycerium bifurcatum (Polypodiaceae), may exhibit a primitive form of eusocial behavior amongst clones. The evidence for this is that individuals live in colonies, where they are structured in different ways, with fronds of differing size and shape, to collect and store water and nutrients for the colony to use. At the top of a colony, there are both pleated fan-shaped "nest" fronds that collect and hold water, and gutter-shaped "strap" fronds that channel water: no solitary Platycerium species has both types. At the bottom of a colony, there are "nest" fronds that clasp the trunk of the tree supporting the fern, and drooping photosynthetic fronds. These are argued to be adapted to support the colony structurally, i.e. that the individuals in the colony are to some degree specialized for tasks, a division of labor.

Evolution

Main article: Evolution of eusociality

Phylogenetic distribution

Further information: Sociality

Eusociality is a rare but widespread phenomenon in species in at least seven orders in the animal kingdom, as shown in the phylogenetic tree (non-eusocial groups not shown). All species of termites are eusocial, and it is believed that they were the first eusocial animals to evolve, sometime in the upper Jurassic period (~150 million years ago). The other orders shown contain both eusocial and non-eusocial species, including many lineages where eusociality is inferred to be the ancestral state. Thus the number of independent evolutions of eusociality (clades) is not known. The major eusocial groups are shown in boldface in the phylogenetic tree.

Eukaryotes
Animalia
Chordata

Mole-rats

Arthropoda
Decapoda

Synalpheus spp.

Insecta
Blattodea
all Termites

(150 mya)
Eumetabola
Paraneoptera
Thysanoptera

Kladothrips spp.

Hemiptera

various Aphids

Metabola
Coleoptera

Austroplatypus incompertus

Hymenoptera

many Vespidae (wasps)

all Ants

(100 mya)

many Bees

Plantae

Staghorn fern Platycerium bifurcatum

Paradox

Prior to the gene-centered view of evolution, eusociality was seen as paradoxical: if adaptive evolution unfolds by differential reproduction of individual organisms, the evolution of individuals incapable of passing on their genes presents a challenge. In On the Origin of Species, Darwin referred to the existence of sterile castes as the "one special difficulty, which at first appeared to me insuperable, and actually fatal to my theory". Darwin anticipated that a possible resolution to the paradox might lie in the close family relationship, which W.D. Hamilton quantified a century later with his 1964 inclusive fitness theory. After the gene-centered view of evolution was developed in the mid-1970s, non-reproductive individuals were seen as an extended phenotype of the genes, which are the primary beneficiaries of natural selection.

Inclusive fitness and haplodiploidy

Argument that haplodiploidy favors eusociality

Further information: Inclusive fitness and Haplodiploidy
Honey bees are haplodiploid, with haploid males and diploid females. It has been suggested that this organisation favours eusociality, but haplodiploidy is neither necessary nor sufficient for eusociality to emerge.

According to inclusive fitness theory, organisms can gain fitness by increasing the reproductive output of other individuals that share their genes, especially their close relatives. Natural selection favors individuals to help their relatives when the cost of helping is less than the benefit gained by their relative multiplied by the fraction of genes that they share, i.e. when Cost < relatedness * Benefit. W. D. Hamilton suggested in 1964 that eusociality could evolve more easily among haplodiploid species such as Hymenoptera, because of their unusual relatedness structure.

In haplodiploid species, females develop from fertilized eggs and males develop from unfertilized eggs. Because a male is haploid, his daughters share 100% of his genes and 50% of their mother's. Therefore, they share 75% of their genes with each other. This mechanism of sex determination gives rise to what W. D. Hamilton first termed "supersisters", more closely related to their sisters than they would be to their own offspring. Even though workers often do not reproduce, they can pass on more of their genes by helping to raise their sisters than by having their own offspring (each of which would only have 50% of their genes). This unusual situation, where females may have greater fitness when they help rear sisters rather than producing offspring, is often invoked to explain the multiple independent evolutions of eusociality (at least nine separate times) within the Hymenoptera.

Argument that haplodiploidy does not favor eusociality

Against the supposed benefits of haplodiploidy for eusociality, Robert Trivers notes that while females share 75% of genes with their sisters in haplodiploid populations, they only share 25% of their genes with their brothers. Accordingly, the average relatedness of an individual to their sibling is 50%. Therefore, helping behavior is only advantageous if it is biased to helping sisters, which would drive the population to a 1:3 sex ratio of males to females. At this ratio, males, as the rarer sex, increase in reproductive value, reducing the benefit of female-biased investment.

Further, not all eusocial species are haplodiploid: termites, some snapping shrimps, and mole rats are not. Conversely, many non-eusocial bees are haplodiploid, and among eusocial species many queens mate with multiple males, resulting in a hive of half-sisters that share only 25% of their genes. The association between haplodiploidy and eusociality is below statistical significance. Haplodiploidy is thus neither necessary nor sufficient for eusociality to emerge. Relatedness does still play a part, as monogamy (queens mating singly) is the ancestral state for all eusocial species so far investigated. If kin selection is an important force driving the evolution of eusociality, monogamy should be the ancestral state, because it maximizes the relatedness of colony members.

Evolutionary ecology

Increased parasitism and predation rates are the primary ecological drivers of social organization. Group living affords colony members defense against enemies, specifically predators, parasites, and competitors, and allows them to gain advantage from superior foraging methods. The importance of ecology in the evolution of eusociality is supported by evidence such as experimentally induced reproductive division of labor, for example when normally solitary queens are forced together. Conversely, female Damaraland mole-rats undergo hormonal changes that promote dispersal after periods of high rainfall.

Climate too appears to be a selective agent driving social complexity; across bee lineages and Hymenoptera in general, higher forms of sociality are more likely to occur in tropical than temperate environments. Similarly, social transitions within halictid bees, where eusociality has been gained and lost multiple times, are correlated with periods of climatic warming. Social behavior in facultative social bees is often reliably predicted by ecological conditions, and switches in behavioral type have been experimentally induced by translocating offspring of solitary or social populations to warm and cool climates. In H. rubicundus, females produce a single brood in cooler regions and two or more broods in warmer regions, so the former populations are solitary while the latter are social. In another species of sweat bees, L. calceatum, social phenotype has been predicted by altitude and micro-habitat composition, with social nests found in warmer, sunnier sites, and solitary nests found in adjacent, cooler, shaded locations. Facultatively social bee species, however, which comprise the majority of social bee diversity, have their lowest diversity in the tropics, being largely limited to temperate regions.

Multilevel selection

Further information: Group selection

Once pre-adaptations such as group formation, nest building, high cost of dispersal, and morphological variation are present, between-group competition has been suggested as a driver of the transition to advanced eusociality. M. A. Nowak, C. E. Tarnita, and E. O. Wilson proposed in 2010 that since eusociality produces an extremely altruistic society, eusocial groups should out-reproduce their less cooperative competitors, eventually eliminating all non-eusocial groups from a species. Multilevel selection has been heavily criticized for its conflict with the kin selection theory.

Reversal to solitarity

A reversal to solitarity is an evolutionary phenomenon in which descendants of a eusocial group evolve solitary behavior once again. Bees have been model organisms for the study of reversal to solitarity, because of the diversity of their social systems. Each of the four origins of eusociality in bees was followed by at least one reversal to solitarity, giving a total of at least nine reversals. In a few species, solitary and eusocial colonies appear simultaneously in the same population, and different populations of the same species may be fully solitary or eusocial. This suggests that eusociality is costly to maintain, and can only persist when ecological variables favor it. Disadvantages of eusociality include the cost of investing in non-reproductive offspring, and an increased risk of disease.

All reversals to solitarity have occurred among primitively eusocial groups; none have followed the emergence of advanced eusociality. The "point of no return" hypothesis posits that the morphological differentiation of reproductive and non-reproductive castes prevents highly eusocial species such as the honeybee from reverting to the solitary state.

Physiology and development

Pheromones

Pheromones play an important role in the physiological mechanisms of eusociality. Enzymes involved in the production and perception of pheromones were important for the emergence of eusociality within both termites and hymenopterans. The best-studied queen pheromone system in social insects is that of the honey bee Apis mellifera. Queen mandibular glands produce a mixture of five compounds, three aliphatic and two aromatic, which control workers. Mandibular gland extracts inhibit workers from constructing queen cells, which can delay the hormonally based behavioral development of workers and suppress their ovarian development. Both behavioral effects mediated by the nervous system often leading to recognition of queens (releaser) and physiological effects on the reproductive and endocrine system (primer) are attributed to the same pheromones. These pheromones volatilize or are deactivated within thirty minutes, allowing workers to respond rapidly to the loss of their queen.

The levels of two of the aliphatic compounds increase rapidly in virgin queens within the first week after emergence from the pupa, consistent with their roles as sex attractants during the mating flight. Once a queen is mated and begins laying eggs, she starts producing the full blend of compounds. In several ant species, reproductive activity is associated with pheromone production by queens. Mated egg-laying queens are attractive to workers, whereas young winged virgin queens elicit little or no response.

Physiology of eusociality in fire ants: three queen pheromones help to create and maintain the eusocial state of the colony. Loss of a primer pheromone triggers the development of replacement queens (dashed lines).

Among ants, the queen pheromone system of the fire ant Solenopsis invicta includes both releaser and primer pheromones. A queen recognition (releaser) pheromone is stored in the poison sac along with three other compounds. These compounds elicit a behavioral response from workers. Several primer effects have also been demonstrated. Pheromones initiate reproductive development in new winged females, called female sexuals. These chemicals inhibit workers from rearing male and female sexuals, suppress egg production in other queens of multiple queen colonies, and cause workers to execute excess queens. These pheromones maintain the eusocial phenotype, with one queen supported by sterile workers and sexually active males (drones). In queenless colonies, the lack of queen pheromones causes winged females to quickly shed their wings, develop ovaries and lay eggs. These virgin replacement queens assume the role of the queen and start to produce queen pheromones. Similarly, queen weaver ants Oecophylla longinoda have exocrine glands that produce pheromones which prevent workers from laying reproductive eggs.

Similar mechanisms exist in the eusocial wasp Vespula vulgaris. For a queen to dominate all the workers, usually numbering more than 3000 in a colony, she signals her dominance with pheromones. The workers regularly lick the queen while feeding her, and the air-borne pheromone from the queen's body alerts those workers of her dominance.

The mode of action of inhibitory pheromones which prevent the development of eggs in workers has been demonstrated in the bumble bee Bombus terrestris. The pheromones suppress activity of the endocrine gland, the corpus allatum, stopping it from secreting juvenile hormone. With low juvenile hormone, eggs do not mature. Similar inhibitory effects of lowering juvenile hormone were seen in halictine bees and polistine wasps, but not in honey bees.

Other mechanisms

A variety of other mechanisms give queens of different species of social insects a measure of reproductive control over their nest mates. In many Polistes wasps, monogamy is established soon after colony formation by physical dominance interactions among foundresses of the colony including biting, chasing, and food soliciting. Such interactions create a dominance hierarchy headed by larger, older individuals with the greatest ovarian development. The rank of subordinates is correlated with the degree of ovarian development. Workers do not oviposit when queens are present, for a variety of reasons: colonies tend to be small enough that queens can effectively dominate workers; queens practice selective oophagy; the flow of nutrients favors queen over workers; and queens rapidly lay eggs in new or vacated cells.

In primitively eusocial bees (where castes are morphologically similar and colonies are small and short-lived), queens frequently nudge their nest mates and then burrow back down into the nest. This draws workers into the lower part of the nest where they may respond to stimuli for cell construction and maintenance. Being nudged by the queen may help to inhibit ovarian development; in addition, the queen eats any eggs laid by workers. Furthermore, temporally discrete production of workers and gynes (actual or potential queens) can cause size dimorphisms between different castes, as size is strongly influenced by the season during which the individual is reared. In many wasps, worker caste is determined by a temporal pattern in which workers precede non-workers of the same generation. In some cases, for example in bumblebees, queen control weakens late in the season, and the ovaries of workers develop. The queen attempts to maintain her dominance by aggressive behavior and by eating worker-laid eggs; her aggression is often directed towards the worker with the greatest ovarian development.

In highly eusocial wasps (where castes are morphologically dissimilar), both the quantity and quality of food are important for caste differentiation. Recent studies in wasps suggest that differential larval nourishment may be the environmental trigger for larval divergence into workers or gynes. All honey bee larvae are initially fed with royal jelly, which is secreted by workers, but normally they are switched over to a diet of pollen and honey as they mature; if their diet is exclusively royal jelly, they grow larger than normal and differentiate into queens. This jelly contains a specific protein, royalactin, which increases body size, promotes ovary development, and shortens the developmental time period. The differential expression in Polistes of larval genes and proteins (also differentially expressed during queen versus caste development in honey bees) indicates that regulatory mechanisms may operate very early in development.

In popular culture

Stephen Baxter's 2003 science fiction novel Coalescent imagines a human eusocial organisation founded in ancient Rome, in which most individuals are subject to reproductive repression. Harold Fromm, reviewing Groping for Groups by E. O. Wilson and others in The Hudson Review, asks whether Wilson's stated "wish" for humans to bring about "a permanent paradise for human beings" would mean "to be group-selected in factories in the style of Huxley's Brave New World.

See also

References

  1. ^ Crespi, Bernard J.; Yanega, Douglas (1995). "The Definition of Eusociality". Behavioral Ecology. 6: 109–115. doi:10.1093/beheco/6.1.109.
  2. ^ Batra, Suzanne W. T. (1 September 1966). "Nests and Social Behavior of Halictine bees of India (Hymenoptera: Halictidae)". The Indian Journal of Entomology. 28 (3): 375–393.
  3. Opachaloemphan, Comzit; Yan, Hua; Leibholz, Alexandra; Desplan, Claude; Reinberg, Danny (2018-11-23). "Recent Advances in Behavioral (Epi)Genetics in Eusocial Insects". Annual Review of Genetics. 52 (1): 489–510. doi:10.1146/annurev-genet-120116-024456. ISSN 0066-4197. PMC 6445553. PMID 30208294.
  4. ^ Michener, Charles D. (1969). "Comparative Social Behavior of Bees". Annual Review of Entomology. 14: 299–342. doi:10.1146/annurev.en.14.010169.001503.
  5. ^ Gadagkar, Raghavendra (1993). "And now... eusocial thrips!". Current Science. 64 (4): 215–216.
  6. Wilson, Edward O. (1971). "3 The Social Wasps; 4 The Ants; 6 The Termites". The Insect Societies. Cambridge, Massachusetts: Belknap Press of Harvard University Press. ISBN 9780674454903.
  7. ^ Wilson, Edward O.; Hölldobler, Bert (20 September 2005). "Eusociality: Origin and Consequences". PNAS. 102 (38): 13367–13371. Bibcode:2005PNAS..10213367W. doi:10.1073/pnas.0505858102. PMC 1224642. PMID 16157878.
  8. ^ Preston, Elizabeth (2 July 2021). "These Plants Act Like Bees in a Hive". New York Times. Retrieved 7 July 2021.
  9. ^ Burns, K. C.; Hutton, Ian; Shepherd, Lara (14 May 2021). "Primitive eusociality in a land plant?". Ecology. 102 (9): e03373. Bibcode:2021Ecol..102E3373B. doi:10.1002/ecy.3373. ISSN 0012-9658. PMID 33988245. S2CID 234496454. Retrieved 7 July 2021.
  10. Danforth, Bryan N. (December 26, 2001). "Evolution of sociality in a primitively eusocial lineage of bees". PNAS. 99 (1): 286–290. doi:10.1073/pnas.012387999. PMC 117553. PMID 11782550.
  11. ^ Thorne, B. L. (1997). "Evolution of eusociality in termites". Annual Review of Ecology, Evolution, and Systematics. 28 (11): 27–54. doi:10.1146/annurev.ecolsys.28.1.27. PMC 349550.
  12. ^ Stern, D. L. (1994). "A phylogenetic analysis of soldier evolution in the aphid family Hormaphididae". Proceedings of the Royal Society. 256 (1346): 203–209. Bibcode:1994RSPSB.256..203S. doi:10.1098/rspb.1994.0071. PMID 8029243. S2CID 14607482.
  13. ^ Kent, D. S.; Simpson, J. A. (1992). "Eusociality in the beetle Austroplatypus incompertus (Coleoptera: Curculionidae)". Naturwissenschaften. 79 (2): 86–87. Bibcode:1992NW.....79...86K. doi:10.1007/BF01131810. S2CID 35534268.
  14. Hölldobler, B. (1990). "8 Caste and Division of Labor". The Ants. Cambridge, Massachusetts: Belknap Press. pp. 298–318.
  15. Cervo, Rita (2006). "Polistes wasps and their social parasites: an overview". Annales Zoologici Fennici. 43 (5/6): 531–549. JSTOR 23736760.
  16. Zara, Fernando; Balestieri, Jose (2000). "Behavioural Catalogue of Polistes versicolor Olivier (Vespidae: Polistinae) Post-emergent Colonies". Naturalia. 25: 301–319.
  17. Richards, Miriam H. (2019). "Social trait definitions influence evolutionary inferences: a phylogenetic approach to improving social terminology for bees". Current Opinion in Insect Science. 34: 97–104. Bibcode:2019COIS...34...97R. doi:10.1016/j.cois.2019.04.006. PMID 31247426. S2CID 151303496.
  18. Peters, Ralph S.; Krogmann, Lars; Mayer, Christoph; Donath, Alexander; Gunkel, Simon; et al. (April 2017). "Evolutionary History of the Hymenoptera". Current Biology. 27 (7): 1013–1018. Bibcode:2017CBio...27.1013P. doi:10.1016/j.cub.2017.01.027. hdl:2434/801122. PMID 28343967.
  19. Cardinal, Sophie; Danforth, Bryan N. (2011). "The antiquity and evolutionary history of social behavior in bees". PLOS ONE. 6 (6): e21086. Bibcode:2011PLoSO...621086C. doi:10.1371/journal.pone.0021086. PMC 3113908. PMID 21695157.
  20. ^ Wongvilas, S.; Deowanish, S.; Lim, J.; Xie, V. R. D.; Griffith, O. W.; Oldroyd, B. P. (2010). "Interspecific and conspecific colony mergers in the dwarf honey bees Apis andreniformis and A. florea". Insectes Sociaux. 57 (3): 251–255. doi:10.1007/s00040-010-0080-7. S2CID 8657703.
  21. Bartareau, T. (1996). "Foraging Behaviour of Trigona Carbonaria (Hymenoptera: Apidae) at Multiple-Choice Feeding Stations". Australian Journal of Zoology. 44 (2): 143. doi:10.1071/zo9960143.
  22. Conway, John R. (September 1986). "The Biology of Honey Ants". The American Biology Teacher. 48 (6): 335–343. doi:10.2307/4448321. JSTOR 4448321.
  23. West-Eberhard, M. J. (1982). "The Nature and Evolution of Swarming In Tropical Social Wasps (Vespidae, Polistinae, Polybini)". Smithsonian Tropical Research Institute.
  24. van Veen, J. W.; Sommeijer, M. J.; Meeuwsen, F. (November 1997). "Behaviour of drones in Melipona (Apidae, Meliponinae)". Insectes Sociaux. 44 (4): 435–447. doi:10.1007/s000400050063. S2CID 36563930.
  25. Wcislo, W. T.; Wille, A.; Orozco, E. (1993). "Nesting biology of tropical solitary and social sweat bees, Lasioglossum (Dialictus) figueresi Wcislo and L. (D.) aeneiventre (Friese) (Hymenoptera: Halictidae)". Insectes Sociaux. 40: 21–40. doi:10.1007/BF01338830. S2CID 6867760.
  26. Richards, Miriam H. (2000). "Evidence for geographic variation in colony social organization in an obligately social sweat bee, Lasioglossum malachurum Kirby (Hymenoptera; Halictidae)". Canadian Journal of Zoology. 78 (7): 1259–1266. doi:10.1139/z00-064.
  27. Costa-Leonardo AM, Haifig I. (2014). Termite Communication During Different Behavioral Activities. In: Biocommunication of Animals. Dortrecht, Springer, 161–190.
  28. Adams, E. S. (1987). "Territory size and population limits in mangrove termites". Journal of Animal Ecology. 56 (3): 1069–1081. Bibcode:1987JAnEc..56.1069A. doi:10.2307/4967. JSTOR 4967.
  29. "Science: The Australian beetle that behaves like a bee". New Scientist. 9 May 1992. Retrieved 2010-10-31.
  30. Aoki, S.; Imai, M. (2005). "Factors affecting the proportion of sterile soldiers in growing aphid colonies". Population Ecology. 47 (2): 127–136. Bibcode:2005PopEc..47..127A. doi:10.1007/s10144-005-0218-z. S2CID 2224506.
  31. Crespi B. J. (1992). "Eusociality in Australian gall thrips". Nature. 359 (6397): 724–726. Bibcode:1992Natur.359..724C. doi:10.1038/359724a0. S2CID 4242926.
  32. Stern, D.; Foster, W. (1996). "The evolution of soldiers in aphids". Biological Reviews. 71 (1): 27–79. doi:10.1111/j.1469-185x.1996.tb00741.x. PMID 8603120. S2CID 8991755.
  33. Duffy, J. Emmett; Morrison, Cheryl L.; Rios, Ruben (2000). "Multiple origins of eusociality among sponge-dwelling shrimps (Synalpheus)". Evolution. 54 (2): 503–516. doi:10.1111/j.0014-3820.2000.tb00053.x. PMID 10937227. S2CID 1088840.
  34. Duffy, J. E. (1998). "On the frequency of eusociality in snapping shrimps (Decapoda: Alpheidae), with description of a second eusocial species". Bulletin of Marine Science. 63 (2): 387–400.
  35. Duffy, J. E. (2003). "The ecology and evolution of eusociality in sponge-dwelling shrimp". Genes, Behaviors and Evolution of Social Insects: 217–254.
  36. Duffy, J. E.; Macdonald, K. S. (2010). "Kin structure, ecology and the evolution of social organization in shrimp: a comparative analysis". Proceedings of the Royal Society B: Biological Sciences. 277 (1681): 575–584. doi:10.1098/rspb.2009.1483. PMC 2842683. PMID 19889706.
  37. Hultgren, K.M.; Duffy, J. E. (2012). "Phylogenetic community ecology and the role of social dominance in sponge-dwelling shrimp". Ecology Letters. 15 (7): 704–713. Bibcode:2012EcolL..15..704H. doi:10.1111/j.1461-0248.2012.01788.x. PMID 22548770.
  38. Macdonald, K.S.; Rios, R.; Duffy, J. E. (2006). "Biodiversity, host specificity, and dominance by eusocial species among sponge-dwelling alpheid shrimp on the Belize Barrier Reef". Diversity and Distributions. 12 (2): 165–178. Bibcode:2006DivDi..12..165M. doi:10.1111/j.1366-9516.2005.00213.x. S2CID 44096968.
  39. Richards, Miriam H. (10 September 2024). "Social evolution and reproductive castes in trematode parasites". Proceedings of the National Academy of Sciences. 121 (37). doi:10.1073/pnas.2414228121.
  40. ^ Metz, Daniel C. G.; Hechinger, Ryan F. (30 July 2024). "The physical soldier caste of an invasive, human-infecting flatworm is morphologically extreme and obligately sterile". Proceedings of the National Academy of Sciences. 121 (31). Bibcode:2024PNAS..12100953M. doi:10.1073/pnas.2400953121. PMC 11295071. PMID 39042696.
  41. Burda, H. Honeycutt; Begall, S.; Locker-Grutjen, O.; Scharff, A. (2000). "Are naked and common mole-rats eusocial and if so, why?". Behavioral Ecology and Sociobiology. 47 (5): 293–303. Bibcode:2000BEcoS..47..293B. doi:10.1007/s002650050669. S2CID 35627708. Archived from the original on 2016-03-04. Retrieved 2007-11-30.
  42. O'Riain, M.J.; Faulkes, C. G. (2008). "African Mole-Rats: Eusociality, Relatedness and Ecological Constraints". Ecology of Social Evolution. Springer. pp. 207–223. doi:10.1007/978-3-540-75957-7_10. ISBN 978-3-540-75956-0.
  43. O' Riain, M.; et al. (1996). "A Dispersive Morph in the Naked Mole-Rat". Nature. 380 (6575): 619–621. Bibcode:1996Natur.380..619O. doi:10.1038/380619a0. PMID 8602260. S2CID 4251872.
  44. Williams, S. A.; Shattuck, M. R. (2015). "Ecology, longevity and naked mole-rats: confounding effects of sociality?". Proceedings of the Royal Society of London B: Biological Sciences. 282 (1802): 20141664. doi:10.1098/rspb.2014.1664. PMC 4344137. PMID 25631992.
  45. Foster, Kevin R.; Ratnieks, Francis L.W. (2005). "A new eusocial vertebrate?" (PDF). Trends in Ecology & Evolution. 20 (7): 363–364. Bibcode:2005TEcoE..20..363F. doi:10.1016/j.tree.2005.05.005. PMID 16701397. Archived from the original (PDF) on 2012-03-11. Retrieved 2011-04-04.
  46. ^ Gintis, Herbert (2012). "Clash of the Titans. Book review of 'The Social Conquest of Earth' by Edward O. Wilson". BioScience. 62 (11): 987–991. doi:10.1525/bio.2012.62.11.8.
  47. Kesebir, Selin (2012). "The Superorganism Account of Human Sociality: How and When Human Groups Are Like Beehives". Personality and Social Psychology Review. 16 (3): 233–261. doi:10.1177/1088868311430834. ISSN 1088-8683. PMID 22202149.
  48. ^ Foster, Kevin R.; Ratnieks, Francis L. W. (2005). "A new eusocial vertebrate?" (PDF). Trends in Ecology & Evolution. 20 (7): 363–364. Bibcode:2005TEcoE..20..363F. doi:10.1016/j.tree.2005.05.005. PMID 16701397.
  49. Chu, Carol; Buchman-Schmitt, Jennifer M.; Stanley, Ian H.; Hom, Melanie A.; Tucker, Raymond P.; Hagan, Christopher R.; Rogers, Megan L.; Podlogar, Matthew C.; Chiurliza, Bruno (2017). "The interpersonal theory of suicide: A systematic review and meta-analysis of a decade of cross-national research". Psychological Bulletin. 143 (12): 1313–1345. doi:10.1037/bul0000123. PMC 5730496. PMID 29072480.
  50. ^ Dawkins, Richard (24 May 2012). "The Descent of Edward Wilson. Book review of 'The Social Conquest of Earth' by Edward O. Wilson". Prospect.
  51. Pinker, Steven. "The False Allure of Group Selection". Edge. Retrieved 31 July 2016.
  52. Kramer, Jos; Meunier, Joël (2016-04-28). "Kin and multilevel selection in social evolution: a never-ending controversy?". F1000Research. 5: F1000 Faculty Rev–776. doi:10.12688/f1000research.8018.1. ISSN 2046-1402. PMC 4850877. PMID 27158472.
  53. VanderLaan, Doug P.; Ren, Zhiyuan; Vasey, Paul L. (2013). "Male androphilia in the ancestral environment. An ethnological analysis". Human Nature. 24 (4): 375–401. doi:10.1007/s12110-013-9182-z. PMID 24091924. S2CID 44341304.
  54. Hawkes, Kristen; Coxworth, James E. (2013). "Grandmothers and the evolution of human longevity: a review of findings and future directions". Evolutionary Anthropology. 22 (6): 294–302. doi:10.1002/evan.21382. PMID 24347503. S2CID 37985774.
  55. Hooper, Paul L.; Gurven, Michael; Winking, Jeffrey; Kaplan, Hillard S. (2015-03-22). "Inclusive fitness and differential productivity across the life course determine intergenerational transfers in a small-scale human society". Proceedings of the Royal Society B: Biological Sciences. 282 (1803): 20142808. doi:10.1098/rspb.2014.2808. PMC 4345452. PMID 25673684.
  56. Lubinsky, Mark (2018). "Evolutionary justifications for human reproductive limitations". Journal of Assisted Reproduction and Genetics. 35 (12): 2133–2139. doi:10.1007/s10815-018-1285-3. PMC 6289914. PMID 30116921.
  57. Jetz, Walter; Rubenstein, Dustin R. (2011). "Environmental Uncertainty and the Global Biogeography of Cooperative Breeding in Birds". Current Biology. 21 (1): 72–78. Bibcode:2011CBio...21...72J. doi:10.1016/j.cub.2010.11.075. PMID 21185192.
  58. Rosenbaum, Stacy; Gettler, Lee T. (2018). "With a little help from her friends (and family) part I: the ecology and evolution of non-maternal care in mammals". Physiology & Behavior. 193 (Pt A): 1–11. doi:10.1016/j.physbeh.2017.12.025. PMID 29933836. S2CID 49380840.
  59. Clutton-Brock, T. H.; Hodge, S. J.; Flower, T. P. (2008-09-01). "Group size and the suppression of subordinate reproduction in Kalahari meerkats". Animal Behaviour. 76 (3): 689–700. doi:10.1016/j.anbehav.2008.03.015. ISSN 0003-3472. S2CID 53203398.
  60. "Forum: The eusociality continuum". Behavioral Ecology. 6 (1): 102–108. 1995. doi:10.1093/beheco/6.1.102.
  61. Burns, Kevin C. (2021-11-02). "On the selective advantage of coloniality in staghorn ferns (Platycerium bifurcatum, Polypodiaceae)". Plant Signaling & Behavior. 16 (11). Bibcode:2021PlSiB..1661063B. doi:10.1080/15592324.2021.1961063. ISSN 1559-2324. PMC 8525959. PMID 34338155.
  62. Thorne, B.L.; Grimaldi, D.A.; Krishna, K. (2001) . "Early fossil history of the termites". In Abe, T.; Bignell, D.E; Higashi, M. (eds.). Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers. pp. 77–93.
  63. Darwin, Charles. On the Origin of Species, 1859. Chapter 8
  64. Dawkins, Richard (2016) . "6. Organisms, Groups, and Memes: Replicators or Vehicles?". The Extended Phenotype. Oxford University Press. pp. 147–178. ISBN 978-0198788911.
  65. v7, pp. 1–16, and 17-52.
  66. Hamilton, W. D. (20 March 1964). "The Genetical Evolution of Social Behaviour I". Journal of Theoretical Biology. 7 (1): 1–16. Bibcode:1964JThBi...7....1H. doi:10.1016/0022-5193(64)90038-4. PMID 5875341.
  67. ^ Hamilton, W. D. (20 March 1964). "The Genetical Evolution of Social Behaviour II". Journal of Theoretical Biology. 7 (1): 17–52. Bibcode:1964JThBi...7...17H. doi:10.1016/0022-5193(64)90039-6. PMID 5875340.
  68. Quiñones, Andrés E.; Pen, Ido (23 June 2017). "A unified model of Hymenopteran preadaptations that trigger the evolutionary transition to eusociality". Nature Communications. 8: 15920. Bibcode:2017NatCo...815920Q. doi:10.1038/ncomms15920. PMC 5490048. PMID 28643786.
  69. Trivers, Robert L.; Hare, Hope (1976). "Haplodiploidy and the evolution of social insects". Science. 191 (4224): 249–263. Bibcode:1976Sci...191..249T. doi:10.1126/science.1108197. PMID 1108197.
  70. Alpedrinha, João; West, Stuart A.; Gardner, Andy (2013). "Haplodiploidy and the evolution of eusociality: worker reproduction". The American Naturalist. 182 (4): 421–438. doi:10.1086/671994. hdl:10023/5520. PMID 24021396. S2CID 6548485.
  71. Nowak, Martin; Tarnita, Corina; Wilson, Edward O. (26 August 2010). "The evolution of eusociality". Nature. 466 (7310): 1057–1062. Bibcode:2010Natur.466.1057N. doi:10.1038/nature09205. PMC 3279739. PMID 20740005.
  72. Wilson, Edward O. (2008-01-01). "One Giant Leap: How Insects Achieved Altruism and Colonial Life". BioScience. 58 (1): 17–25. doi:10.1641/b580106.
  73. ^ Hughes, William O. H.; Benjamin P. Oldroyd; Madeleine Beekman; Francis L. W. Ratnieks (2008-05-30). "Ancestral Monogamy Shows Kin Selection Is Key to the Evolution of Eusociality". Science. 320 (5880): 1213–1216. Bibcode:2008Sci...320.1213H. doi:10.1126/science.1156108. PMID 18511689. S2CID 20388889.
  74. Cahan, S. H.; Gardner-Morse, E. (2013). "The emergence of reproductive division of labor in forced queen groups of the ant Pogonomyrmex barbatus". Journal of Zoology. 291 (1): 12–22. doi:10.1111/jzo.12071.
  75. Molteno, A. J.; Bennett, N. C. (2002). "Rainfall, dispersal and reproductive inhibition in eusocial Damaraland mole-rats (Cryptomys damarensis)". Journal of Zoology. 256 (4): 445–448. doi:10.1017/s0952836902000481.
  76. Toth, A. L.; Robinson, G. E. (2009-01-01). "Evo-Devo and the evolution of social behavior: Brain gene expression analyses in social insects". Cold Spring Harbor Symposia on Quantitative Biology. 74: 419–426. doi:10.1101/sqb.2009.74.026. PMID 19850850.
  77. ^ Yanega, D. (1993). "Environmental influences on male production and social structure in Halictus rubicundus (Hymenoptera: Halictidae)". Insectes Sociaux. 40 (2): 169–180. doi:10.1007/BF01240705. S2CID 44934383.
  78. Shell, Wyatt A.; Rehan, Sandra M. (2017-07-24). "Behavioral and genetic mechanisms of social evolution: insights from incipiently and facultatively social bees". Apidologie. 49: 13–30. doi:10.1007/s13592-017-0527-1. ISSN 0044-8435.
  79. Nowak, M. A.; Tarnita, C. E.; Wilson, E. O. (2010). "The evolution of eusociality". Nature. 466 (7310): 1057–1062. Bibcode:2010Natur.466.1057N. doi:10.1038/nature09205. PMC 3279739. PMID 20740005.
  80. Abbot, Patrick; et al. (2011). "Inclusive fitness theory and eusociality". Nature. 471 (7339): E1 – E4. Bibcode:2011Natur.471E...1A. doi:10.1038/nature09831. PMC 3836173. PMID 21430721.
  81. Zara, Fernando; Balestieri, Jose (2000). "Behavioural Catalogue of Polistes versicolor Olivier (Vespidae: Polistinae) Post-emergent Colonies". Naturalia. 25: 301–319.
  82. Harrison, Mark C.; Jongepier, Evelien; Robertson, Hugh M.; Arning, Nicolas; Bitard-Feildel, Tristan; et al. (2018). "Hemimetabolous genomes reveal molecular basis of termite eusociality". Nature Ecology & Evolution. 2 (3): 557–566. Bibcode:2018NatEE...2..557H. doi:10.1038/s41559-017-0459-1. PMC 6482461. PMID 29403074.
  83. ^ Vargo, E. (1999). "Reproductive development and ontogeny or queen pheromone production in the fire ant Solenopsis invicta". Physiological Entomology. 24 (4): 370–376. doi:10.1046/j.1365-3032.1999.00153.x. S2CID 84103230.
  84. ^ Fletcher, D.; Ross, K. (1985). "Regulation of Reproduction in Eusocial Hymenoptera". Annual Review of Entomology. 30: 319–343. doi:10.1146/annurev.ento.30.1.319.
  85. Carpenter, J.M (1987). "Phylogenetic relationships and classification of the Vespinae (Hymenoptera: Vespidae)". Systematic Entomology. 12 (4): 413–431. Bibcode:1987SysEn..12..413C. doi:10.1111/j.1365-3113.1987.tb00213.x. S2CID 9388017.
  86. Feyereisen, R.; Tobe, S. (1981). "A rapid partition assay for routine analysis of juvenile hormone released by insect corpora allata". Analytical Biochemistry. 111 (2): 372–375. doi:10.1016/0003-2697(81)90575-3. PMID 7247032.
  87. ^ Hunt, J.; Wolschin, F.; Henshaw, M.; Newman, T.; Toth, A.; Amdam, G. (17 May 2010). "Differential gene expression and protein abundance evince ontogenetic bias toward castes in a primitively eusocial wasp". PLOS ONE. 5 (5): e10674. Bibcode:2010PLoSO...510674H. doi:10.1371/journal.pone.0010674. PMC 2871793. PMID 20498859.
  88. Kamakura, Masaki (May 2011). "Royalactin induces queen differentiation in honeybees". Nature. 473 (7348): 478–483. Bibcode:2011Natur.473..478K. doi:10.1038/nature10093. hdl:2123/10940. PMID 21516106. S2CID 2060453.
  89. Murphy, Graham (July 2008). "'Considering Her Ways': In(ter)secting matriarchal utopias". Science Fiction Studies. 35 (2): 266–280.
  90. Fromm, Harold (2013). "Review of Groping for Groups, by Edward O. Wilson, Jonathan Haidt, Steven Mithen, Steven Pinker, and Richard Dawkins". The Hudson Review. 65 (4): 652–658. JSTOR 43489291.

External links

Eusociality
Topics
Groups
In culture
Pioneers, works
Ethology
Branches
Ethologists
Societies
Journals
Sociobiology
Topics
Supporters
Opponents
Swarming
Biological swarming
Animal migration
Swarm algorithms
Collective motion
Swarm robotics
Related topics
Categories: