Misplaced Pages

Gliese 832: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 22:31, 27 April 2020 editReal North Korea (talk | contribs)8 editsNo edit summary← Previous edit Latest revision as of 04:25, 19 December 2024 edit undoCitation bot (talk | contribs)Bots5,450,503 edits Altered template type. Add: bibcode, doi, pages, volume, date, journal, title, arxiv, authors 1-19. Removed URL that duplicated identifier. Changed bare reference to CS1/2. | Use this bot. Report bugs. | Suggested by Jay8g | #UCB_toolbar 
(49 intermediate revisions by 22 users not shown)
Line 1: Line 1:
{{Short description|Star in the constellation Grus}}
{{Starbox begin {{Starbox begin
| name = Gliese 832 | name = Gliese 832
}}
{{Starbox image
|image={{Location map|100x100|AlternativeMap=Grus_constellation_map.svg
|alt=Gliese 832 is located in the constellation Grus.
|caption=Location of Gliese 832 in the constellation ]|border=infobox|mark=Red_pog.png|width=300
|label=Gliese 832
|position=top
|lat=30.6
|long=86.5
}}|caption=
}} }}
{{Starbox observe {{Starbox observe
| epoch = J2000.0 | epoch = J2000.0
| constell = ] | constell = ]
| ra = {{RA|21|33|33.9750}}<ref name="Gaia DR2"/> | ra = {{RA|21|33|33.97512}}<ref name="GaiaDR3"/>
| dec = {{DEC|−49|00|32.4035}}<ref name="Gaia DR2"/> | dec = {{DEC|−49|00|32.3994}}<ref name="GaiaDR3"/>
| appmag_v = 8.66<ref name="bailey08"/> | appmag_v = 8.66<ref name="bailey08"/>
}} }}
{{Starbox character {{Starbox character
|type=]
| class = M2V<ref name=mnras452_3_2745/> | class = M2V<ref name=mnras452_3_2745/>
| r-i = | r-i =
Line 18: Line 30:
}} }}
{{Starbox astrometry {{Starbox astrometry
| radial_v = 18.0 | radial_v = {{val|12.72|0.13}}<ref name="GaiaDR3"/>
| prop_mo_ra = {{val|−45.834|0.071}}<ref name="Gaia DR2"/> | prop_mo_ra = {{val|−45.917}}
| prop_mo_dec = {{val|−816.604|0.064}}<ref name="Gaia DR2"/> | prop_mo_dec = {{val|−816.875}}
| pm_footnote = <ref name="GaiaDR3"/>
| parallax = 201.4073
| p_error = 0.0429 | parallax = 201.3252
| p_error = 0.0237
| parallax_footnote = <ref name="Gaia DR2"/>
| parallax_footnote = <ref name="GaiaDR3"/>
| absmag_v = 10.19<ref name="bailey08"/> | absmag_v = 10.19<ref name="bailey08"/>
}} }}
{{Starbox detail {{Starbox detail
| mass = 0.45 ± 0.05<ref name="bailey08"/> | mass = 0.441 ± 0.011<ref name="Pineda2021"/>
| radius = 0.48<ref name=apjss53_643/> | radius = 0.442 ± 0.018<ref name=Pineda2021/>
| luminosity_bolometric = 0.0276 ± 0.0009 <ref name=Pineda2021/>
| luminosity_bolometric = 0.035{{#tag:ref|Using the absolute visual magnitude of Gliese 832 <math>\scriptstyle M_{V_{\ast}}=10.19</math> with a ] of <math>\scriptstyle BC=-1.821</math><ref name="citation-bolometric_correction"/> the bolometric magnitude can be calculated as <math>\scriptstyle M_{bol_{\ast}}=8.369</math>, the bolometric magnitude of the Sun <math>\scriptstyle M_{bol_{\odot}}=4.73</math>,<ref name="citation-tableprovisoBC"/> and so therefore the bolometric luminosity can be calculated by <math>\scriptstyle \frac{L_{bol_{\ast}}}{L_{bol_{\odot}}}=10^{0.4\left(M_{bol_{\odot}} - M_{bol_{\ast}}\right)}</math>|group="note"|name=luminosity_bolometric}}<!--The derived bolometric luminosity of 0.035 was calculated assuming Gl 832 has a temperature of 3657 Kelvin, and not 3620 Kelvin, because for the sake of consistency I wanted to use a temperature value from the same paper as from where the 10.19 absolute visual magnitude value came from, i.e. both values are taken from Bailey et al. 2008 ("bailey08")-->
| luminosity_visual = 0.007<ref name=luminosity_visual group=note/> | luminosity_visual = 0.007<ref name=luminosity_visual group=note/>
| gravity = 4.7<ref name="bailey08"/> | gravity = 4.7<ref name="bailey08"/>
| temperature = 3,620<ref name=bessell1994/> | temperature = {{val|3,539|79|74|fmt=commas}}<ref name=Pineda2021/>
| metal_fe = {{val|−0.06|0.04}}<ref name="Lindgren2017"/> | metal_fe = −0.06 ± 0.04<ref name="Lindgren2017"/>
| rotation = {{val|45.7|9.3|u=d}}<ref name=mnras452_3_2745/> | rotation = {{val|37.5|1.4|1.5|u=d}}<ref name=Gorrini2022/>
| age_gyr = {{val|6|1.5}}<ref name=Gorrini2022/>
| age_gyr = 9.24<ref name="age">{{Cite journal|author-link= |arxiv=1404.0641 |title= Age Aspects of Habitability|journal= International Journal of Astrobiology|volume= 15|issue= 2|pages= 93–105|last1= Safonova|first1= M.|last2= Murthy|first2= J.|last3= Shchekinov|first3= Yu. A.|year= 2014|doi= 10.1017/S1473550415000208|bibcode = 2016IJAsB..15...93S}}</ref>
}} }}
{{Starbox catalog {{Starbox catalog
| names = CD-49°13515, ] 204961, ] 106440, LHS 3685, PLX 5190<ref name="Simbad"/> | names = {{odlist | 2MASS = J21333397-4900323 | CD = -49°13515 | GJ = 832 | HD = 204961 | HIP = 106440 | L = 354-89 | LHS = 3685 | PLX = 5190 | TIC = 139754153 | TYC = 8431-60-1}}<ref name="Simbad"/>
}} }}
{{Starbox reference {{Starbox reference
Line 54: Line 67:
{{Starbox end}} {{Starbox end}}


'''Gliese 832''' ('''Gl 832''' or '''GJ 832''') is a ] of ] M2V in the southern ] ].{{r|Mike Wall}} The ] of 8.66<ref name="bailey08"/> means that it is too faint to be seen with the naked eye. It is located relatively close to the ], at a distance of 16.2 ]s<ref name="Gaia DR2"/> and has a high ] of 818.93&nbsp;milliarcseconds<ref name=aa575_A35/> per year.<ref name="Gaia DR2"/> Gliese 832 has just under half the mass and radius of the Sun.{{r|Mike Wall}} Its estimated rotation period is a relatively leisurely 46&nbsp;days.<ref name=mnras452_3_2745/> The star is roughly 9.6 billion years old.<ref name="age"/> '''Gliese 832''' ('''Gl 832''' or '''GJ 832''') is a ] of ] M2V in the southern ] ].{{r|Mike Wall}} The ] of 8.66<ref name="bailey08"/> means that it is too faint to be seen with the naked eye. It is located relatively close to the ], at a distance of 16.2 ]s<ref name="GaiaDR3"/> and has a high ] of 818.16&nbsp;milliarcseconds per year.<ref name="GaiaDR3"/> Gliese 832 has just under half the mass and radius of the Sun.{{r|Mike Wall}} Its estimated rotation period is a relatively leisurely 46&nbsp;days.<ref name=mnras452_3_2745/> The star is roughly 6 billion years old.<ref name=Gorrini2022/>


In 2014, Gliese 832 was announced to be hosting the closest potentially ] Earth-mass-range ] to the Solar System.{{r|Mike Wall}} This star achieved ] some 52,920&nbsp;years ago when it came within an estimated {{Convert|4.817|pc|ly|abbr=on|lk=off|order=flip}} of the Sun.<ref name=aa575_A35/> This star achieved ] some 52,920&nbsp;years ago when it came within an estimated {{Convert|4.817|pc|ly|abbr=on|lk=off|order=flip}} of the Sun.<ref name=aa575_A35/>

Gliese 832 emits X-rays.<ref name=Schmitt/> Despite the strong ], Gliese 832 is producing on average less ionizing radiation than the Sun. Only at extremely short radiation wavelengths (<50nm) does its radiation intensity rise above the level of quiet Sun, but does not reach levels typical for active Sun.<ref>{{cite journal |year=2016|last1=Fontenla|first1=J. M.|last2=Linsky|first2=Jeffrey L.|last3=Garrison|first3=Jesse|last4=France|first4=Kevin|last5=Buccino|first5=A.|last6=Mauas|first6=Pablo|last7=Vietes|first7=Mariela|last8=Walkowicz|first8=Lucianne M. |title=Semi-Empirical Modeling of the Photosphere, Chromopshere, Transition Region, and Corona of the M-Dwarf Host Star Gj 832 |journal=The Astrophysical Journal |volume=830 |issue=2 |doi=10.3847/0004-637X/830/2/154 |bibcode=2016ApJ...830..154F |pages=154|hdl=11336/21732|s2cid=119279568 |hdl-access=free |doi-access=free |arxiv=1608.00934 }}</ref>


==Planetary system== ==Planetary system==
Gliese 832 hosts one known planet, with a second planet having been refuted in 2022.<ref name=Gorrini2022/> No additional planets were found as of 2024.<ref>{{cite journal | arxiv=2409.01173 | last1=Liebing | first1=F. | last2=Jeffers | first2=S. V. | last3=Gorrini | first3=P. | last4=Haswell | first4=C. A. | last5=Dreizler | first5=S. | last6=Barnes | first6=J. R. | last7=Hartogh | first7=C. | last8=Koseleva | first8=V. | last9=Del Sordo | first9=F. | last10=Amado | first10=P. J. | last11=Caballero | first11=J. A. | last12=López-González | first12=M. J. | last13=Morales | first13=N. | last14=Reiners | first14=A. | last15=Ribas | first15=I. | last16=Quirrenbach | first16=A. | last17=Rodríguez | first17=E. | last18=Tal-Or | first18=L. | last19=Tsapras | first19=Y. | title=RedDots: Limits on habitable and undetected planets orbiting nearby stars GJ 832, GJ 674, and Ross 128 | journal=Astronomy and Astrophysics | date=2024 | volume=690 | pages=A234 | doi=10.1051/0004-6361/202347902 | bibcode=2024A&A...690A.234L }}</ref>
Gliese 832 hosts two known planets.
{{OrbitboxPlanet begin

| table_ref = <ref name="Xiao2023"/>
===Discovery of Jupiter mass planet===
| period_unit = year
In September 2008, it was announced that a ]-like planet, now designated as ], had been detected in a long-period, near-circular orbit around this star (false alarm probability thus far: a negligible 0.05%). It would induce an ] perturbation on its star of at least 0.95 ]s and is thus a good candidate for being detected by astrometric observations. Despite its relatively large angular distance, direct imaging is problematic due to the star–planet contrast.<ref name="bailey08" />

===Discovery of Gliese 832 c (super-Earth mass planet) in habitable zone===
In 2014, a second planet was discovered by astronomers at the University of New South Wales. This one is believed to be of super-Earth mass{{r|Mike Wall}} and has since been given the scientific name ].{{r|Mike Wall}} It was announced to orbit in the optimistic ] but outside the conservative habitable zone of its parent star.<ref name="Wittenmyer14" />

The planet is believed to be in, or very close to, the right distance from its sun to allow liquid water to exist on its surface.{{r|Mike Wall}}

===Search for cometary disc===
If this system has a comet disc, it is undetectable "brighter than the fractional dust luminosity 10<sup>−5</sup>" of a recent Herschel study.<ref name=nodebris/>

{{OrbitboxPlanet begin}}
{{OrbitboxPlanet
| exoplanet = ]
| mass_earth = ≥5.4±1
| period = 35.68±0.03
| semimajor = 0.162±0-017
| eccentricity = 0.18 ± 0.13
}} }}
{{OrbitboxPlanet {{OrbitboxPlanet
| exoplanet = ] | exoplanet = ]
| mass = ≥0.64 ± 0.06 | mass = {{val|0.8|0.12|0.11}}
| period = 3416 ± 131 | period = {{val|9.88|0.34|0.33}}
| semimajor = 3.4 ± 0.4 | semimajor = {{val|3.53|0.15|0.16}}
| eccentricity = 0.12 ± 0.11 | eccentricity = {{val|0.069|0.026|0.027}}
| inclination = {{val|54.9|6.6|4.9}} or {{val|125.1|4.9|6.6}}
}} }}
{{Orbitbox end}} {{Orbitbox end}}


==] source== ===Gliese 832 b===
Gliese 832 emits X-rays.<ref name=Schmitt/> {{Main|Gliese 832 b}}
In September 2008, it was announced that a ]-like planet, designated ], had been detected in a long-period, near-circular orbit around this star, with a false alarm probability of a negligible 0.05%. It would induce an ] perturbation on its star of at least 0.95 ]s and is thus a good candidate for being detected by astrometric observations. Despite its relatively large angular distance, direct imaging is problematic due to the star–planet contrast.<ref name="bailey08" /> The orbital solution of the planet was refined in 2011.<ref name=Bonfils2011/> In 2023, an astrometric detection of the planet was announced, determining its inclination and revealing a ] 80% the mass of Jupiter.<ref name="Xiao2023"/>

===Gliese 832 c===
Gliese 832 c was believed to be of ] mass.{{r|Mike Wall}} It was announced to orbit in the optimistic ] but outside the conservative habitable zone of its parent star.<ref name="Wittenmyer14" /> The planet Gliese 832 c was believed to be in, or very close to, the right distance from its sun to allow liquid water to exist on its surface.{{r|Mike Wall}} However, doubts were raised about the existence of planet c by a 2015 study, which found that its orbital period is close to the stellar rotation period.<ref name=mnras452_3_2745/> The existence of the planet was refuted in 2022, when a study found that the ] signal shows characteristics of a signal originating from stellar activity, and not from a planet.<ref name=Gorrini2022/>

The region between Gliese 832 b and where Gliese 832 c would be is a zone where additional planets are possible.<ref>{{citation|arxiv=1604.04544|title=Dynamics of a Probable Earth-mass Planet in GJ 832 System|year=2016|doi=10.3847/1538-4357/aa80e2|last1=Satyal|first1=S.|last2=Griffith|first2=J.|last3=Musielak|first3=Z. E.|journal=The Astrophysical Journal|volume=845|issue=2|page=106|s2cid=118663957 |doi-access=free }}</ref>

===Search for cometary disc===
If this system has a comet disc, it is not "brighter than the fractional dust luminosity 10<sup>−5</sup>" according to a 2012 ] study.<ref name=nodebris/>


==See also== ==See also==
Line 105: Line 114:
==References== ==References==
{{reflist|refs= {{reflist|refs=

<ref name="GaiaDR3">{{Cite Gaia DR3|6562924609150908416}}</ref>

<ref name="Pineda2021">{{cite journal
| title=The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars
| last1=Pineda | first1=J. Sebastian | last2=Youngblood | first2=Allison
| last3=France | first3=Kevin
| journal=The Astrophysical Journal
| volume=918 | issue=1 | id=40 | pages=23 | date=September 2021
| doi=10.3847/1538-4357/ac0aea | arxiv=2106.07656
| bibcode=2021ApJ...918...40P | s2cid=235435757 | doi-access=free }}</ref>


<ref name=nodebris> <ref name=nodebris>
Line 153: Line 173:
|last20=Wilner |last20=Wilner
|first20=D. J. |first20=D. J.
|s2cid=53704989
}}</ref> }}</ref>

<ref name=bessell1994>Interpolated value from ], per: {{cite conference
|last=Bessell |first=M. S.
|title=The Temperature Scale for Cool Dwarfs
|editor-last=Tinney |editor-first=C. G.
|date=1995
|booktitle=The Bottom of the Main Sequence - and Beyond, Proceedings of the ESO Workshop
|page=123
|publisher=]
|bibcode=1995bmsb.conf..123B
}}</ref>


<ref name="bailey08"> <ref name="bailey08">
Line 182: Line 192:
|bibcode=2009ApJ...690..743B |bibcode=2009ApJ...690..743B
|doi=10.1088/0004-637X/690/1/743 |doi=10.1088/0004-637X/690/1/743
|s2cid=17172233
}}</ref>
}}</ref>


<ref name="Wittenmyer14"> <ref name="Wittenmyer14">
Line 225: Line 236:
|last20=Diaz |last20=Diaz
|first20=M. |doi=10.1088/0004-637X/791/2/114 |first20=M. |doi=10.1088/0004-637X/791/2/114
|s2cid=12157837
}}</ref> }}</ref>

<ref name=apjss53_643>
{{cite journal
|last1=Johnson |first1=H. M.
|last2=Wright |first2=C. D.
|date=1983
|bibcode=1983ApJS...53..643J
|title=Predicted infrared brightness of stars within 25 parsecs of the sun
|journal=]
|volume=53 |pages=643–771
|doi=10.1086/190905
}}</ref>


<ref name=Schmitt> <ref name=Schmitt>
Line 250: Line 250:
|bibcode=1995ApJ...450..392S |bibcode=1995ApJ...450..392S
|doi=10.1086/176149 |doi=10.1086/176149
|doi-access=free
}}</ref>
}}</ref>


<ref name="Mike Wall">"Nearby Alien Planet May Be Capable of Supporting Life", Mike Wall, Space.com, June 25, 2014, http://www.space.com/26357-exoplanet-habitable-zone-gliese-832c.html {{Webarchive|url=https://web.archive.org/web/20180712234753/http://www.space.com/26357-exoplanet-habitable-zone-gliese-832c.html |date=2018-07-12 }}</ref>
<ref name="citation-tableprovisoBC">
{{cite journal
| author=Torres, Guillermo
| title=On the Use of Empirical Bolometric Corrections for Stars
| journal=] |date=November 2010 | volume=140 | issue=5 | pages=1158–1162 | layurl=http://iopscience.iop.org/1538-3881/140/5/1158/fulltext/aj363350t3_ascii.txt
| doi=10.1088/0004-6256/140/5/1158
| bibcode=2010AJ....140.1158T
| arxiv = 1008.3913
}}</ref>

<ref name="citation-bolometric_correction">
{{cite journal
| last1=Flower
| first1=Phillip J.
| title=Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections
| journal=]
| volume=469
| page=355
| date=September 1996
| doi=10.1086/177785
| bibcode=1996ApJ...469..355F }}</ref>

<ref name="Mike Wall">"Nearby Alien Planet May Be Capable of Supporting Life", Mike Wall, Space.com, June 25, 2014, http://www.space.com/26357-exoplanet-habitable-zone-gliese-832c.html</ref>


<ref name=aa575_A35>{{citation <ref name=aa575_A35>{{citation
Line 283: Line 261:
| volume=575 | id=A35 | pages=13 | date=March 2015 | volume=575 | id=A35 | pages=13 | date=March 2015
| doi=10.1051/0004-6361/201425221 | bibcode=2015A&A...575A..35B | doi=10.1051/0004-6361/201425221 | bibcode=2015A&A...575A..35B
| arxiv = 1412.3648 | postscript=. | arxiv = 1412.3648 | s2cid=59039482
| postscript=.
}}</ref> }}</ref>


<ref name="Lindgren2017">{{cite journal | title=Metallicity determination of M dwarfs. Expanded parameter range in metallicity and effective temperature | url=https://www.aanda.org/articles/aa/full_html/2017/08/aa30715-17/aa30715-17.html | last1=Lindgren | first1=Sara | last2=Heiter | first2=Ulrike | journal=Astronomy and Astrophysics | volume=604 | pages=A97 | year=2017 | arxiv=1705.08785 | bibcode=2017A&A...604A..97L | doi=10.1051/0004-6361/201730715 | s2cid=119216828 | access-date=2018-09-03 | archive-date=2021-01-23 | archive-url=https://web.archive.org/web/20210123180529/https://www.aanda.org/articles/aa/full_html/2017/08/aa30715-17/aa30715-17.html | url-status=live }}</ref>
<ref name="Gaia DR2">{{Cite Gaia DR2|6562924609150908416}}</ref>


<ref name="Simbad">{{cite simbad | title=Gliese 832 | access-date=2018-09-23 }}</ref>
<ref name="Lindgren2017">{{cite journal | title=Metallicity determination of M dwarfs. Expanded parameter range in metallicity and effective temperature | url=https://www.aanda.org/articles/aa/full_html/2017/08/aa30715-17/aa30715-17.html | last1=Lindgren | first1=Sara | last2=Heiter | first2=Ulrike | journal=Astronomy and Astrophysics | volume=604 | pages=A97 | year=2017 | arxiv=1705.08785 | bibcode=2017A&A...604A..97L | doi=10.1051/0004-6361/201730715 }}</ref>

<ref name="Simbad">{{cite simbad | title=Gliese 832 | accessdate=2018-09-23 }}</ref>


<ref name=mnras452_3_2745>{{citation <ref name=mnras452_3_2745>{{citation
Line 299: Line 276:
| journal=Monthly Notices of the Royal Astronomical Society | journal=Monthly Notices of the Royal Astronomical Society
| volume=452 | issue=3 | pages=2745–2756 | date=September 2015 | volume=452 | issue=3 | pages=2745–2756 | date=September 2015
| doi=10.1093/mnras/stv1441 | bibcode=2015MNRAS.452.2745S | doi=10.1093/mnras/stv1441 | doi-access=free | bibcode=2015MNRAS.452.2745S
| arxiv=1506.08039 | postscript=. | arxiv=1506.08039 | s2cid=119181646 | postscript=.
}}</ref> }}</ref>

<ref name=Bonfils2011>{{cite journal |doi=10.1051/0004-6361/201014704 |last1=Bonfils |first1=Xavier |last2=Delfosse |first2=Xavier |last3=Udry |first3=Stéphane |last4=Forveille |first4=Thierry |last5=Mayor |first5=Michel |last6=Perrier |first6=Christian |last7=Bouchy |first7=François |last8=Gillon |first8=Michaël |last9=Lovis |first9=Christophe |last10=Pepe |first10=Francesco |last11=Queloz |first11=Didier |last12=Santos |first12=Nuno C. |last13=Ségransan |first13=Damien |last14=Bertaux |first14=Jean-Loup |title=The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample |journal=Astronomy and Astrophysics |date=2011 |volume=549 |bibcode=2013A&A...549A.109B |arxiv = 1111.5019 |pages=A109 |s2cid=119288366 }}</ref>

<ref name=Gorrini2022>{{cite journal |last1=Gorrini |first1=P. |last2=Astudillo-Defru |first2=N. |display-authors=etal |date=August 2022 |title=Detailed stellar activity analysis and modelling of GJ 832: Reassessment of the putative habitable zone planet GJ 832c |journal=] |volume=664 |issue= |pages=A64 |doi=10.1051/0004-6361/202243063 |arxiv=2206.07552 |bibcode=2022A&A...664A..64G|s2cid=249674385 }}</ref>

<ref name="Xiao2023">{{cite journal |last1=Xiao |first1=Guang-Yao |last2=Liu |first2=Yu-Juan |display-authors=etal |date=March 2023 |title=The Masses of a Sample of Radial-Velocity Exoplanets with Astrometric Measurements |journal=] |volume= 23|issue= 5|pages= |doi= 10.1088/1674-4527/accb7e|arxiv=2303.12409|bibcode=2023RAA....23e5022X |s2cid=257663647 }}</ref>


}} }}


{{Sky|21|33|33.9752|-|49|00|32.422|16.10}} {{Sky|21|33|33.9752|-|49|00|32.422|16.200}}
{{nearest systems|4}} {{nearest systems|4}}
{{Stars of Grus}} {{Stars of Grus}}


{{DEFAULTSORT:Gliese 832}}
]
] ]
] ]
Line 314: Line 299:
] ]
] ]
] ]
] ]
]
]
]

Latest revision as of 04:25, 19 December 2024

Star in the constellation Grus
Gliese 832
Gliese 832 is located in the constellation Grus.Gliese 832 is located in the constellation Grus.Gliese 832Location of Gliese 832 in the constellation Grus
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Grus
Right ascension 21 33 33.97512
Declination −49° 00′ 32.3994″
Apparent magnitude (V) 8.66
Characteristics
Evolutionary stage main-sequence star
Spectral type M2V
B−V color index 1.52
Astrometry
Radial velocity (Rv)12.72±0.13 km/s
Proper motion (μ) RA: −45.917 mas/yr
Dec.: −816.875 mas/yr
Parallax (π)201.3252 ± 0.0237 mas
Distance16.200 ± 0.002 ly
(4.9671 ± 0.0006 pc)
Absolute magnitude (MV)10.19
Details
Mass0.441 ± 0.011 M
Radius0.442 ± 0.018 R
Luminosity (bolometric)0.0276 ± 0.0009  L
Luminosity (visual, LV)0.007 L
Surface gravity (log g)4.7 cgs
Temperature3,539+79
−74 K
Metallicity −0.06 ± 0.04 dex
Rotation37.5+1.4
−1.5 d
Age6±1.5 Gyr
Other designations
CD−49°13515, GJ 832, HD 204961, HIP 106440, L 354-89, LHS 3685, PLX 5190, TIC 139754153, TYC 8431-60-1, 2MASS J21333397-4900323
Database references
SIMBADThe star
planet c
planet b
Exoplanet Archivedata
Data sources:
Hipparcos Catalogue,
HD

Gliese 832 (Gl 832 or GJ 832) is a red dwarf of spectral type M2V in the southern constellation Grus. The apparent visual magnitude of 8.66 means that it is too faint to be seen with the naked eye. It is located relatively close to the Sun, at a distance of 16.2 light years and has a high proper motion of 818.16 milliarcseconds per year. Gliese 832 has just under half the mass and radius of the Sun. Its estimated rotation period is a relatively leisurely 46 days. The star is roughly 6 billion years old.

This star achieved perihelion some 52,920 years ago when it came within an estimated 15.71 ly (4.817 pc) of the Sun.

Gliese 832 emits X-rays. Despite the strong flare activity, Gliese 832 is producing on average less ionizing radiation than the Sun. Only at extremely short radiation wavelengths (<50nm) does its radiation intensity rise above the level of quiet Sun, but does not reach levels typical for active Sun.

Planetary system

Gliese 832 hosts one known planet, with a second planet having been refuted in 2022. No additional planets were found as of 2024.

The Gliese 832 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(years)
Eccentricity Inclination Radius
b 0.8+0.12
−0.11 MJ
3.53+0.15
−0.16
9.88+0.34
−0.33
0.069+0.026
−0.027
54.9+6.6
−4.9 or 125.1+4.9
−6.6°

Gliese 832 b

Main article: Gliese 832 b

In September 2008, it was announced that a Jupiter-like planet, designated Gliese 832 b, had been detected in a long-period, near-circular orbit around this star, with a false alarm probability of a negligible 0.05%. It would induce an astrometric perturbation on its star of at least 0.95 milliarcseconds and is thus a good candidate for being detected by astrometric observations. Despite its relatively large angular distance, direct imaging is problematic due to the star–planet contrast. The orbital solution of the planet was refined in 2011. In 2023, an astrometric detection of the planet was announced, determining its inclination and revealing a true mass 80% the mass of Jupiter.

Gliese 832 c

Gliese 832 c was believed to be of super-Earth mass. It was announced to orbit in the optimistic habitable zone but outside the conservative habitable zone of its parent star. The planet Gliese 832 c was believed to be in, or very close to, the right distance from its sun to allow liquid water to exist on its surface. However, doubts were raised about the existence of planet c by a 2015 study, which found that its orbital period is close to the stellar rotation period. The existence of the planet was refuted in 2022, when a study found that the radial velocity signal shows characteristics of a signal originating from stellar activity, and not from a planet.

The region between Gliese 832 b and where Gliese 832 c would be is a zone where additional planets are possible.

Search for cometary disc

If this system has a comet disc, it is not "brighter than the fractional dust luminosity 10" according to a 2012 Herschel study.

See also

Notes

  1. Using the absolute visual magnitude of Gliese 832 M V = 10.19 {\displaystyle \scriptstyle M_{V_{\ast }}=10.19} and the absolute visual magnitude of the Sun M V = 4.83 {\displaystyle \scriptstyle M_{V_{\odot }}=4.83} , the visual luminosity can be calculated by L V L V = 10 0.4 ( M V M V ) {\displaystyle \scriptstyle {\frac {L_{V_{\ast }}}{L_{V_{\odot }}}}=10^{0.4\left(M_{V_{\odot }}-M_{V_{\ast }}\right)}}

References

  1. ^ Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. ^ Bailey, J.; Butler, R. P.; Tinney, C. G.; Jones, H. R. A.; O'Toole, S.; Carter, B. D.; Marcy, G. W. (2009). "A Jupiter-like Planet Orbiting the Nearby M Dwarf GJ832". The Astrophysical Journal. 690 (1): 743–747. arXiv:0809.0172. Bibcode:2009ApJ...690..743B. doi:10.1088/0004-637X/690/1/743. S2CID 17172233.
  3. ^ Suárez Mascareño, A.; et al. (September 2015), "Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators", Monthly Notices of the Royal Astronomical Society, 452 (3): 2745–2756, arXiv:1506.08039, Bibcode:2015MNRAS.452.2745S, doi:10.1093/mnras/stv1441, S2CID 119181646.
  4. ^ Pineda, J. Sebastian; Youngblood, Allison; France, Kevin (September 2021). "The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars". The Astrophysical Journal. 918 (1): 23. arXiv:2106.07656. Bibcode:2021ApJ...918...40P. doi:10.3847/1538-4357/ac0aea. S2CID 235435757. 40.
  5. Lindgren, Sara; Heiter, Ulrike (2017). "Metallicity determination of M dwarfs. Expanded parameter range in metallicity and effective temperature". Astronomy and Astrophysics. 604: A97. arXiv:1705.08785. Bibcode:2017A&A...604A..97L. doi:10.1051/0004-6361/201730715. S2CID 119216828. Archived from the original on 2021-01-23. Retrieved 2018-09-03.
  6. ^ Gorrini, P.; Astudillo-Defru, N.; et al. (August 2022). "Detailed stellar activity analysis and modelling of GJ 832: Reassessment of the putative habitable zone planet GJ 832c". Astronomy & Astrophysics. 664: A64. arXiv:2206.07552. Bibcode:2022A&A...664A..64G. doi:10.1051/0004-6361/202243063. S2CID 249674385.
  7. "Gliese 832". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2018-09-23.
  8. ^ "Nearby Alien Planet May Be Capable of Supporting Life", Mike Wall, Space.com, June 25, 2014, http://www.space.com/26357-exoplanet-habitable-zone-gliese-832c.html Archived 2018-07-12 at the Wayback Machine
  9. Bailer-Jones, C. A. L. (March 2015), "Close encounters of the stellar kind", Astronomy & Astrophysics, 575: 13, arXiv:1412.3648, Bibcode:2015A&A...575A..35B, doi:10.1051/0004-6361/201425221, S2CID 59039482, A35.
  10. Schmitt, J. H. M. M.; Fleming, T. A.; Giampapa, M. S. (1995). "The X-ray view of the low-mass stars in the solar neighborhood". The Astrophysical Journal. 450 (9): 392–400. Bibcode:1995ApJ...450..392S. doi:10.1086/176149.
  11. Fontenla, J. M.; Linsky, Jeffrey L.; Garrison, Jesse; France, Kevin; Buccino, A.; Mauas, Pablo; Vietes, Mariela; Walkowicz, Lucianne M. (2016). "Semi-Empirical Modeling of the Photosphere, Chromopshere, Transition Region, and Corona of the M-Dwarf Host Star Gj 832". The Astrophysical Journal. 830 (2): 154. arXiv:1608.00934. Bibcode:2016ApJ...830..154F. doi:10.3847/0004-637X/830/2/154. hdl:11336/21732. S2CID 119279568.
  12. Liebing, F.; Jeffers, S. V.; Gorrini, P.; Haswell, C. A.; Dreizler, S.; Barnes, J. R.; Hartogh, C.; Koseleva, V.; Del Sordo, F.; Amado, P. J.; Caballero, J. A.; López-González, M. J.; Morales, N.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Rodríguez, E.; Tal-Or, L.; Tsapras, Y. (2024). "RedDots: Limits on habitable and undetected planets orbiting nearby stars GJ 832, GJ 674, and Ross 128". Astronomy and Astrophysics. 690: A234. arXiv:2409.01173. Bibcode:2024A&A...690A.234L. doi:10.1051/0004-6361/202347902.
  13. ^ Xiao, Guang-Yao; Liu, Yu-Juan; et al. (March 2023). "The Masses of a Sample of Radial-Velocity Exoplanets with Astrometric Measurements". Research in Astronomy and Astrophysics. 23 (5). arXiv:2303.12409. Bibcode:2023RAA....23e5022X. doi:10.1088/1674-4527/accb7e. S2CID 257663647.
  14. Bonfils, Xavier; Delfosse, Xavier; Udry, Stéphane; Forveille, Thierry; Mayor, Michel; Perrier, Christian; Bouchy, François; Gillon, Michaël; Lovis, Christophe; Pepe, Francesco; Queloz, Didier; Santos, Nuno C.; Ségransan, Damien; Bertaux, Jean-Loup (2011). "The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample". Astronomy and Astrophysics. 549: A109. arXiv:1111.5019. Bibcode:2013A&A...549A.109B. doi:10.1051/0004-6361/201014704. S2CID 119288366.
  15. Wittenmyer, R.A.; Tuomi, M.; Butler, R.P.; Jones, H. R. A.; O'Anglada-Escude, G.; Horner, J.; Tinney, C.G.; Marshall, J.P.; Carter, B.D.; et al. (2014). "GJ 832c: A super-earth in the habitable zone". The Astrophysical Journal. 1406 (2): 5587. arXiv:1406.5587. Bibcode:2014ApJ...791..114W. doi:10.1088/0004-637X/791/2/114. S2CID 12157837.
  16. Satyal, S.; Griffith, J.; Musielak, Z. E. (2016), "Dynamics of a Probable Earth-mass Planet in GJ 832 System", The Astrophysical Journal, 845 (2): 106, arXiv:1604.04544, doi:10.3847/1538-4357/aa80e2, S2CID 118663957
  17. B. C. Matthews; forthcoming study promised in Lestrade, J.-F.; Matthews, B. C.; Sibthorpe, B.; Kennedy, G. M.; Wyatt, M. C.; Bryden, G.; Greaves, J. S.; Thilliez, E.; Moro-Martín, A.; Booth, M.; Dent, W. R. F.; Duchêne, G.; Harvey, P. M.; Horner, J.; Kalas, P.; Kavelaars, J. J.; Phillips, N. M.; Rodriguez, D. R.; Su, K. Y. L.; Wilner, D. J. (2012). "A DEBRIS Disk Around The Planet Hosting M-star GJ581 Spatially Resolved with Herschel". Astronomy and Astrophysics. 548: A86. arXiv:1211.4898. Bibcode:2012A&A...548A..86L. doi:10.1051/0004-6361/201220325. S2CID 53704989.


Known celestial objects within 20 light-years
Primary member type
Celestial objects by systems. Secondary members are listed in small print.
    0–10 ly
Main-sequence
stars
A-type
G-type
M-type
(red dwarfs)
Brown dwarfs
L-type
  • Luhman 16 (6.5029±0.0011 ly)
  • T-type brown dwarf B
Sub-brown dwarfs
and rogue planets
Y-type
10–15 ly
Subgiant stars
F-type
Main-sequence
stars
G-type
  • Tau Ceti (11.9118±0.0074 ly)
  • 4 (8?) planets: (b), (c), (d), e, f, g, h, (i)
K-type
M-type
(red dwarfs)
Degenerate
stars
White dwarfs
Brown dwarfs
T-type
15–20 ly    
Subgiant stars
G-type
Main-sequence
stars
A-type
G-type
K-type
M-type
(red dwarfs)
Degenerate
stars
White dwarfs
Brown dwarfs
L-type
T-type
Y-type
Sub-brown dwarfs
and rogue planets
Y-type
Italic are systems without known trigonometric parallax.
Constellation of Grus
Stars
Bayer
Variable
HR
HD
Other
Exoplanets
Galaxies
NGC
Other
Galaxy clusters
Category
Categories:
Gliese 832: Difference between revisions Add topic