Revision as of 18:22, 27 December 2024 editGregariousMadness (talk | contribs)Extended confirmed users1,409 edits →Table of problems← Previous edit | Revision as of 18:23, 27 December 2024 edit undoGregariousMadness (talk | contribs)Extended confirmed users1,409 edits →Table of problemsNext edit → | ||
Line 112: | Line 112: | ||
|style="text-align:center"| 20th | |style="text-align:center"| 20th | ||
| Computer programs and tabulations | | Computer programs and tabulations | ||
| {{yes|align=left|Addressed through development of SnapPea and other software}} | | {{yes|align=left|Addressed through development of ] and other software}} | ||
|style="text-align:center"| 1990s-2000s | |style="text-align:center"| 1990s-2000s | ||
|- | |- | ||
|style="text-align:center"| 21st | |style="text-align:center"| 21st | ||
| Computer programs and tabulations | | Computer programs and tabulations | ||
| {{yes|align=left|Addressed through development of SnapPea and other software}} | | {{yes|align=left|Addressed through development of ] and other software}} | ||
|style="text-align:center"| 1990s-2000s | |style="text-align:center"| 1990s-2000s | ||
|- | |- | ||
|style="text-align:center"| 22nd | |style="text-align:center"| 22nd | ||
| Computer programs and tabulations | | Computer programs and tabulations | ||
| {{yes|align=left|Addressed through development of SnapPea and other software}} | | {{yes|align=left|Addressed through development of ] and other software}} | ||
|style="text-align:center"| 1990s-2000s | |style="text-align:center"| 1990s-2000s | ||
|- | |- |
Revision as of 18:23, 27 December 2024
Set of 24 mathematics problems posed by William P. ThurstonThurston's 24 questions are a set of mathematical problems posed by American mathematician William Thurston in his influential 1982 paper Three-dimensional manifolds, Kleinian groups and hyperbolic geometry published in the Bulletin of the American Mathematical Society. These questions significantly influenced the development of geometric topology and related fields over the following decades. By 2012, 22 of Thurston's 24 questions had been resolved.
History
The questions appeared following Thurston's announcement of the geometrization conjecture, which proposed that all compact 3-manifolds could be decomposed into geometric pieces. This conjecture, later proven by Grigori Perelman in 2003, represented a complete classification of 3-manifolds and included the famous Poincaré Conjecture as a special case.
Table of problems
Thurston's 24 questions are:
Problem | Brief explanation | Status | Year solved |
---|---|---|---|
1st | The geometrization conjecture for 3-manifolds | Solved by Grigori Perelman using Ricci flow with surgery | 2003 |
2nd | Classification of finite group actions on geometric 3-manifolds | Solved by Meeks, Scott, Dinkelbach, and Leeb | 2009 |
3rd | The geometrization conjecture for 3-orbifolds | Solved by Boileau, Leeb, and Porti | 2005 |
4th | Global theory of hyperbolic Dehn surgery | Resolved through work of Agol, Lackenby, and others | 2000-2013 |
5th | Are all Kleinian groups geometrically tame? | Solved through work of Bonahon and Canary | 1986-1993 |
6th | Density of geometrically finite groups | Solved by Namazi-Souto and Ohshika | 2012 |
7th | Theory of Schottky groups and their limits | Resolved through work of Brock, Canary, and Minsky | 2012 |
8th | Analysis of limits of quasi-Fuchsian groups with accidental parabolics | Solved by Anderson and Canary | 2000 |
9th | Are all Kleinian groups topologically tame? | Solved independently by Agol and by Calegari-Gabai | 2004 |
10th | The Ahlfors measure zero problem | Solved as consequence of geometric tameness | 2004 |
11th | Ending Lamination Conjecture | Solved by Brock, Canary, and Minsky | 2012 |
12th | Describe quasi-isometry type of Kleinian groups | Solved with Ending Lamination Theorem | 2012 |
13th | Hausdorff dimension and geometric finiteness | Solved by Bishop and Jones | 1997 |
14th | Existence of Cannon-Thurston maps | Solved by Mahan Mj | 2009-2012 |
15th | LERF property for Kleinian groups | Solved by Agol, building on work of Wise | 2013 |
16th | Virtual Haken Conjecture | Solved by Agol | 2012 |
17th | Virtual positive first Betti number | Solved by Agol | 2013 |
18th | Virtual fibering conjecture | Solved by Agol | 2013 |
19th | Properties of arithmetic subgroups | Unresolved | — |
20th | Computer programs and tabulations | Addressed through development of SnapPea and other software | 1990s-2000s |
21st | Computer programs and tabulations | Addressed through development of SnapPea and other software | 1990s-2000s |
22nd | Computer programs and tabulations | Addressed through development of SnapPea and other software | 1990s-2000s |
23rd | Rational independence of hyperbolic volumes | Unresolved | — |
24th | Prevalence of hyperbolic structures in manifolds with given Heegaard genus | Solved by Namazi and Souto | 2009 |
See also
- Geometrization conjecture
- Hilbert's problems
- Taniyama's problems
- List of unsolved problems in mathematics
- Poincaré conjecture
References
- ^ Thurston, William P. (1982), "Three-dimensional manifolds, Kleinian groups and hyperbolic geometry", Bulletin of the American Mathematical Society: 357–379
- ^ Thurston, William P. (2014), "Three-dimensional manifolds, Kleinian groups and hyperbolic geometry", Jahresbericht der Deutschen Mathematiker, 116: 3–20