Revision as of 03:19, 9 August 2024 editA mentally disabled mathematician (talk | contribs)119 edits consistent notes and references← Previous edit | Revision as of 22:39, 22 August 2024 edit undoRgdboer (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers17,566 edits →Examples: compare SubalgebraNext edit → | ||
Line 23: | Line 23: | ||
* The ] {{mvar|R}} is a subring of {{mvar|R}}, and {{mvar|R}} is an ] over its center. | * The ] {{mvar|R}} is a subring of {{mvar|R}}, and {{mvar|R}} is an ] over its center. | ||
* The ring of ]s has subrings isomorphic to the rings of ] and ]s, and to the ].{{cn|date=August 2024}} | * The ring of ]s has subrings isomorphic to the rings of ] and ]s, and to the ].{{cn|date=August 2024}} Since these rings are also ] represented by ], the subrings can be identified as ]s. | ||
== Subring generated by a set == | == Subring generated by a set == |
Revision as of 22:39, 22 August 2024
Subset of a ring that forms a ring itselfThis article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (November 2018) (Learn how and when to remove this message) |
Algebraic structure → Ring theory Ring theory |
---|
Basic conceptsRings
Related structures
|
Commutative algebraCommutative rings |
Noncommutative algebraNoncommutative rings
Noncommutative algebraic geometry Operator algebra |
In mathematics, a subring of a ring R is a subset of R that is itself a ring when binary operations of addition and multiplication on R are restricted to the subset, and that shares the same multiplicative identity as R.
Definition
A subring of a ring (R, +, *, 0, 1) is a subset S of R that preserves the structure of the ring, i.e. a ring (S, +, *, 0, 1) with S ⊆ R. Equivalently, it is both a subgroup of (R, +, 0) and a submonoid of (R, *, 1).
Equivalently, S is a subring if and only if it contains the multiplicative identity of R, and is closed under multiplication and subtraction. This is sometimes known as the subring test.
Variations
Some mathematicians define rings without requiring the existence of a multiplicative identity (see Ring (mathematics) § History). In this case, a subring of R is a subset of R that is a ring for the operations of R (this does imply it contains the additive identity of R). This alternate definition gives a strictly weaker condition, even for rings that do have a multiplicative identity, in that all ideals become subrings, and they may have a multiplicative identity that differs from the one of R. With the definition requiring a multiplicative identity, which is used in the rest of this article, the only ideal of R that is a subring of R is R itself.
Examples
- The ring of integers is a subring of both the field of real numbers and the polynomial ring .
- and its quotients have no subrings (with multiplicative identity) other than the full ring.
- Every ring has a unique smallest subring, isomorphic to some ring with n a nonnegative integer (see Characteristic). The integers correspond to n = 0 in this statement, since is isomorphic to .
- The center of a ring R is a subring of R, and R is an associative algebra over its center.
- The ring of split-quaternions has subrings isomorphic to the rings of dual numbers and split-complex numbers, and to the complex number field. Since these rings are also real algebras represented by square matrices, the subrings can be identified as subalgebras.
Subring generated by a set
See also: Generator (mathematics)A special kind of subring of a ring R is the subring generated by a subset X, which is defined as the intersection of all subrings of R containing X. The subring generated by X is also the set of all linear combinations with integer coefficients of elements of X, including the additive identity ("empty combination") and multiplicative identity ("empty product").
Any intersection of subrings of R is itself a subring of R; therefore, the subring generated by X (denoted here as S) is indeed a subring of R. This subring S is the smallest subring of R containing X; that is, if T is any other subring of R containing X, then S ⊆ T.
Since R itself is a subring of R, if R is generated by X, it is said that the ring R is generated by X.
Ring extension
Subrings generalize some aspects of field extensions. If S is a subring of a ring R, then equivalently R is said to be a ring extension of S.
Adjoining
If A is a ring and T is a subring of A generated by R ∪ S, where R is a subring, then T is a ring extension and is said to be S adjoined to R, denoted R. Individual elements can also be adjoined to a subring, denoted R.
For example, the ring of Gaussian integers is a subring of generated by , and thus is the adjunction of the imaginary unit i to .
Prime subring
The intersection of all subrings of a ring R is a subring that may be called the prime subring of R by analogy with prime fields.
The prime subring of a ring R is a subring of the center of R, which is isomorphic either to the ring of the integers or to the ring of the integers modulo n, where n is the smallest positive integer such that the sum of n copies of 1 equals 0.
See also
Notes
- In general, not all subsets of a ring R are rings.
- Not to be confused with the ring-theoretic analog of a group extension.
References
- ^ Dummit, David Steven; Foote, Richard Martin (2004). Abstract algebra (Third ed.). Hoboken, NJ: John Wiley & Sons. p. 228. ISBN 0-471-43334-9.
- Lang, Serge (2002). Algebra (3 ed.). New York. pp. 89–90. ISBN 978-0387953854.
{{cite book}}
: CS1 maint: location missing publisher (link) - ^ Lovett, Stephen (2015). "Rings". Abstract Algebra: Structures and Applications. Boca Raton: CRC Press. pp. 216–217. ISBN 9781482248913.
- Gouvêa, Fernando Q. (2012). "Rings and Modules". A Guide to Groups, Rings, and Fields. Washington, DC: Mathematical Association of America. p. 145. ISBN 9780883853559.
General references
- Adamson, Iain T. (1972). Elementary rings and modules. University Mathematical Texts. Oliver and Boyd. pp. 14–16. ISBN 0-05-002192-3.
- Sharpe, David (1987). Rings and factorization. Cambridge University Press. pp. 15–17. ISBN 0-521-33718-6.