Revision as of 17:15, 15 September 2024 editThumperward (talk | contribs)Administrators122,812 edits →Encoding: this entire section is almost completely opaque and its inclusion stymies the addition of some clear prose describing how unicode is decoded← Previous edit | Revision as of 17:16, 15 September 2024 edit undoThumperward (talk | contribs)Administrators122,812 edits →Encoding: this now refers to removed text and contradicts repeated assertions elsewhere that overlong encodings are unnecessaryNext edit → | ||
Line 131: | Line 131: | ||
A whole graphic character can take more than 4 bytes, because it is made of more than one code point. For instance, a ] takes 8 bytes since it is "constructed from a pair of Unicode scalar values" both from outside the BMP.<ref>{{cite web |title=String |website=Apple Developer |url=https://developer.apple.com/documentation/swift/string |access-date=2021-03-15}}</ref> Some complex emoji characters can take even more than this: The ] emoji (🏳️⚧️), which consists of the 5 code point sequence U+1F3F3 U+FE0F U+200D U+26A7 U+FE0F, requires sixteen bytes to encode, while that for the ] (🏴) requires a total of 28 bytes for the 7 code point sequence U+1F3F4 U+E0067 U+E0062 U+E0073 U+E0063 U+E0074 U+E007F.{{cn}} | A whole graphic character can take more than 4 bytes, because it is made of more than one code point. For instance, a ] takes 8 bytes since it is "constructed from a pair of Unicode scalar values" both from outside the BMP.<ref>{{cite web |title=String |website=Apple Developer |url=https://developer.apple.com/documentation/swift/string |access-date=2021-03-15}}</ref> Some complex emoji characters can take even more than this: The ] emoji (🏳️⚧️), which consists of the 5 code point sequence U+1F3F3 U+FE0F U+200D U+26A7 U+FE0F, requires sixteen bytes to encode, while that for the ] (🏴) requires a total of 28 bytes for the 7 code point sequence U+1F3F4 U+E0067 U+E0062 U+E0073 U+E0063 U+E0074 U+E007F.{{cn}} | ||
=== Overlong encodings === | |||
In principle, it would be possible to inflate the number of bytes in an encoding by padding the code point with leading 0s. To encode the euro sign € from the above example in four bytes instead of three, it could be padded with leading 0s until it was 21 bits long{{snd}}{{mono|000 000010 000010 101100}}, and encoded as {{mono|11110{{fontcolor|#C000C0|000}}}} {{mono|10{{fontcolor|blue|000010}}}} {{mono|10{{fontcolor|green|000010}}}} {{mono|10{{fontcolor|red|101100}}}} (or {{mono|{{fontcolor|#C000C0|F0}}}} {{mono|{{fontcolor|blue|82}}}} {{mono|{{fontcolor|green|82}}}} {{mono|{{fontcolor|red|AC}}}} in hexadecimal). This is called an ''overlong encoding''. | |||
The standard specifies that the correct encoding of a code point uses only the minimum number of bytes required to hold the significant bits of the code point.{{citation needed|date=January 2024}} Longer encodings are called ''overlong'' and are not valid UTF-8 representations of the code point. This rule maintains a one-to-one correspondence between code points and their valid encodings, so that there is a unique valid encoding for each code point. This ensures that string comparisons and searches are well-defined. | |||
=== Invalid sequences and error handling === | === Invalid sequences and error handling === |
Revision as of 17:16, 15 September 2024
ASCII-compatible variable-width encoding of Unicode, using one to four bytesStandard | Unicode Standard |
---|---|
Classification | Unicode Transformation Format, extended ASCII, variable-length encoding |
Extends | ASCII |
Transforms / Encodes | ISO/IEC 10646 (Unicode) |
Preceded by | UTF-1 |
UTF-8 is a character encoding standard used for electronic communication. Defined by the Unicode Standard, the name is derived from Unicode Transformation Format – 8-bit.
UTF-8 is capable of encoding all 1,112,064 (17 planes times 2 code points per plane, minus 2 technically-invalid surrogates) valid Unicode code points using a variable-width encoding of one to four one-byte (8-bit) code units. Code points with lower numerical values, which tend to occur more frequently, are encoded using fewer bytes. It was designed for backward compatibility with ASCII: the first 128 characters of Unicode, which correspond one-to-one with ASCII, are encoded using a single byte with the same binary value as ASCII, so that a UTF-8-encoded document using only those characters is identical to the same text in ASCII and can be read by programs expecting such.
UTF-8 was designed as a superior alternative to UTF-1, a proposed variable-length encoding with partial ASCII compatibility which lacked some features including self-synchronization and fully ASCII-compatible handling of characters such as slashes. Ken Thompson and Rob Pike produced the first implementation for the Plan 9 operating system in September 1992. This led to its adoption by X/Open as its specification for FSS-UTF, which would first be officially presented at USENIX in January 1993 and subsequently adopted by the Internet Engineering Task Force (IETF) in RFC 2277 (BCP 18) for future internet standards work, replacing Single Byte Character Sets such as Latin-1 in older RFCs.
UTF-8 results in fewer internationalization issues than any alternative text encoding, and it has been implemented in all modern operating systems, including Microsoft Windows, and standards such as JSON, where, as is increasingly the case, it is the only allowed form of Unicode.
UTF-8 is the dominant encoding for the World Wide Web and other Internet technologies, accounting for 98.3% of all web pages, 99.1% of the top 100,000 pages, and up to 100% for many languages, as of 2024. Virtually all countries and languages have 95% or more use of UTF-8 encodings on the web.
History
See also: Universal Coded Character Set § HistoryThe International Organization for Standardization (ISO) set out to compose a universal multi-byte character set in 1989. The draft ISO 10646 standard contained a non-required annex called UTF-1 that provided a byte stream encoding of its 32-bit code points. This encoding was not satisfactory on performance grounds, among other problems, and the biggest problem was probably that it did not have a clear separation between ASCII and non-ASCII: new UTF-1 tools would be backward compatible with ASCII-encoded text, but UTF-1-encoded text could confuse existing code expecting ASCII (or extended ASCII), because it could contain continuation bytes in the range 0x21–0x7E that meant something else in ASCII, e.g., 0x2F for /
, the Unix path directory separator.
In July 1992, the X/Open committee XoJIG was looking for a better encoding. Dave Prosser of Unix System Laboratories submitted a proposal for one that had faster implementation characteristics and introduced the improvement that 7-bit ASCII characters would only represent themselves; all multi-byte sequences would include only bytes where the high bit was set. The name File System Safe UCS Transformation Format (FSS-UTF) and most of the text of this proposal were later preserved in the final specification. In August 1992, this proposal was circulated by an IBM X/Open representative to interested parties. A modification by Ken Thompson of the Plan 9 operating system group at Bell Labs made it self-synchronizing, letting a reader start anywhere and immediately detect character boundaries, at the cost of being somewhat less bit-efficient than the previous proposal. It also abandoned the use of biases and instead added the rule that only the shortest possible encoding is allowed; the additional loss in compactness is relatively insignificant, but readers now have to look out for invalid encodings to avoid reliability and especially security issues. Thompson's design was outlined on September 2, 1992, on a placemat in a New Jersey diner with Rob Pike. In the following days, Pike and Thompson implemented it and updated Plan 9 to use it throughout, and then communicated their success back to X/Open, which accepted it as the specification for FSS-UTF.
UTF-8 was first officially presented at the USENIX conference in San Diego, from January 25 to 29, 1993. The Internet Engineering Task Force adopted UTF-8 in its Policy on Character Sets and Languages in RFC 2277 (BCP 18) for future internet standards work in January 1998, replacing Single Byte Character Sets such as Latin-1 in older RFCs.
In November 2003, UTF-8 was restricted by RFC 3629 to match the constraints of the UTF-16 character encoding: explicitly prohibiting code points corresponding to the high and low surrogate characters removed more than 3% of the three-byte sequences, and ending at U+10FFFF removed more than 48% of the four-byte sequences and all five- and six-byte sequences.
Naming
The official name for the encoding is UTF-8, the spelling used in all Unicode Consortium documents. Most standards officially list it in upper case as well, but all that do are also case-insensitive and utf-8
is often used in code.
Some other spellings may also be accepted by standards, e.g. web standards (which include CSS, HTML, XML, and HTTP headers) explicitly allow utf8 (and disallow "unicode") and many aliases for encodings. Spellings with a space e.g. "UTF 8" should not be used. The official Internet Assigned Numbers Authority also lists csUTF8 as the only alias, which is rarely used.
In Windows, UTF-8 is codepage 65001
(i.e. CP_UTF8
in source code).
In MySQL, UTF-8 is called utf8mb4
(with utf8mb3
, and its alias utf8
, being a subset encoding for characters in the Basic Multilingual Plane).
In HP PCL, the Symbol-ID for UTF-8 is 18N
.
In Oracle Database (since version 9.0), AL32UTF8
means UTF-8. Oracle previously used the UTF-8 name to refer to CESU-8, a deprecated variant.
UTF-8-BOM and UTF-8-NOBOM are sometimes used for text files which contain or do not contain a byte-order mark (BOM), respectively. In Japan especially, UTF-8 encoding without a BOM is sometimes called UTF-8N.
Design
This section is in list format but may read better as prose. You can help by converting this section, if appropriate. Editing help is available. |
Some of the important features of this encoding are as follows:
- Backward compatibility: Backward compatibility with ASCII and the enormous amount of software designed to process ASCII-encoded text was the main driving force behind the design of UTF-8. In UTF-8, single bytes with values in the range of 0 to 127 map directly to Unicode code points in the ASCII range. Single bytes in this range represent characters, as they do in ASCII. Moreover, 7-bit bytes (bytes where the most significant bit is 0) never appear in a multi-byte sequence, and no valid multi-byte sequence decodes to an ASCII code-point. A sequence of 7-bit bytes is both valid ASCII and valid UTF-8, and under either interpretation represents the same sequence of characters. Therefore, the 7-bit bytes in a UTF-8 stream represent all and only the ASCII characters in the stream. Thus, many text processors, parsers, protocols, file formats, text display programs, etc., which use ASCII characters for formatting and control purposes, will continue to work as intended by treating the UTF-8 byte stream as a sequence of single-byte characters, without decoding the multi-byte sequences. ASCII characters on which the processing turns, such as punctuation, whitespace, and control characters will never be encoded as multi-byte sequences. It is therefore safe for such processors to simply ignore or pass-through the multi-byte sequences, without decoding them. For example, ASCII whitespace may be used to tokenize a UTF-8 stream into words; ASCII line-feeds may be used to split a UTF-8 stream into lines; and ASCII NUL characters can be used to split UTF-8-encoded data into null-terminated strings. Similarly, many format strings used by library functions like "printf" will correctly handle UTF-8-encoded input arguments.
- Fallback and auto-detection: Only a small subset of possible byte strings are a valid UTF-8 string: several bytes cannot appear; a byte with the high bit set cannot be alone; and further requirements mean that it is extremely unlikely that a readable text in any extended ASCII is valid UTF-8. Part of the popularity of UTF-8 is due to it providing a form of backward compatibility for these as well. A UTF-8 processor which erroneously receives extended ASCII as input can thus "auto-detect" this with very high reliability. A UTF-8 stream may simply contain errors, resulting in the auto-detection scheme producing false positives; but auto-detection is successful in the vast majority of cases, especially with longer texts, and is widely used. It also works to "fall back" or replace 8-bit bytes using the appropriate code-point for a legacy encoding when errors in the UTF-8 are detected, allowing recovery even if UTF-8 and legacy encoding is concatenated in the same file.
- Prefix code: The first byte indicates the number of bytes in the sequence. Reading from a stream can instantaneously decode each individual fully received sequence, without first having to wait for either the first byte of a next sequence or an end-of-stream indication. The length of multi-byte sequences is easily determined by humans as it is simply the number of high-order 1s in the leading byte. An incorrect character will not be decoded if a stream ends mid-sequence.
- Self-synchronization: The leading bytes and the continuation bytes do not share values (continuation bytes start with the bits 10 while single bytes start with 0 and longer lead bytes start with 11). This means a search will not accidentally find the sequence for one character starting in the middle of another character. It also means the start of a character can be found from a random position by backing up at most 3 bytes to find the leading byte. An incorrect character will not be decoded if a stream starts mid-sequence, and a shorter sequence will never appear inside a longer one.
- Sorting order: The chosen values of the leading bytes means that a list of UTF-8 strings can be sorted in code point order by sorting the corresponding byte sequences.
Single-byte
- UTF-8 can encode any Unicode character, avoiding the need to figure out and set a "code page" or otherwise indicate what character set is in use, and allowing output in multiple scripts at the same time. For many scripts there have been more than one single-byte encoding in usage, so even knowing the script was insufficient information to display it correctly.
- The bytes 0xFE and 0xFF do not appear, so a valid UTF-8 stream never matches the UTF-16 byte-order mark (BOM) and thus cannot be confused with it. The absence of 0xFF (0377) also eliminates the need to escape this byte in Telnet (and FTP control connection).
- UTF-8 encoded text is larger than specialized single-byte encodings except for plain ASCII characters. In the case of scripts which used 8-bit character sets with non-Latin characters encoded in the upper half (such as most Cyrillic and Greek alphabet code pages), characters in UTF-8 will be double the size. For some scripts, such as Thai and Devanagari (which is used by various South Asian languages), characters will triple in size. There are even examples where a single byte turns into a composite character in Unicode and is thus six times larger in UTF-8. This has caused objections in India and other countries.
- It is possible in UTF-8 (or any other multi-byte encoding) to split or truncate a string in the middle of a character. If the two pieces are not re-appended later before interpretation as characters, this can introduce an invalid sequence at both the end of the previous section and the start of the next, and some decoders will not preserve these bytes and result in data loss. Because UTF-8 is self-synchronizing this will however never introduce a different valid character, and it is also fairly easy to move the truncation point backward to the start of a character.
- If the code points are all the same size, measurements of a fixed number of them is easy. Due to ASCII-era documentation where "character" is used as a synonym for "byte" this is often considered important. However, by measuring string positions using bytes instead of "characters" most algorithms can be easily and efficiently adapted for UTF-8. Searching for a string within a long string can for example be done byte by byte; the self-synchronization property prevents false positives.
Other multi-byte
- UTF-8 can encode any Unicode character. Files in different scripts can be displayed correctly without having to choose the correct code page or font. For instance, Chinese and Arabic can be written in the same file without specialized markup or manual settings that specify an encoding.
- UTF-8 is self-synchronizing: character boundaries are easily identified by scanning for well-defined bit patterns in either direction. If bytes are lost due to error or corruption, one can always locate the next valid character and resume processing. If there is a need to shorten a string to fit a specified field, the previous valid character can easily be found. Many multi-byte encodings such as Shift JIS are much harder to resynchronize. This also means that byte-oriented string-searching algorithms can be used with UTF-8 (as a character is the same as a "word" made up of that many bytes), optimized versions of byte searches can be much faster due to hardware support and lookup tables that have only 256 entries. Self-synchronization does however require that bits be reserved for these markers in every byte, increasing the size.
- Efficient to encode using simple bitwise operations. UTF-8 does not require slower mathematical operations such as multiplication or division (unlike Shift JIS, GB 2312 and other encodings).
- UTF-8 will take more space than a multi-byte encoding designed for a specific script. East Asian legacy encodings generally used two bytes per character yet take three bytes per character in UTF-8.
UTF-16
Main article: UTF-16- Byte encodings and UTF-8 are represented by byte arrays in programs, and often nothing needs to be done to a function when converting source code from a byte encoding to UTF-8. UTF-16 is represented by 16-bit word arrays, and converting to UTF-16 while maintaining compatibility with existing ASCII-based programs (such as was done with Windows) requires every API and data structure that takes a string to be duplicated, one version accepting byte strings and another version accepting UTF-16. If backward compatibility is not needed, all string handling still must be modified.
- Text encoded in UTF-8 will be smaller than the same text encoded in UTF-16 if there are more code points below U+0080 than in the range U+0800..U+FFFF. This is true for all modern European languages. It is often true even for languages like Chinese, due to the large number of spaces, newlines, digits, and HTML markup in typical files.
- Most communication (e.g. HTML and IP) and storage (e.g. for Unix) was designed for a stream of bytes. A UTF-16 string must use a pair of bytes for each code unit:
- The order of those two bytes becomes an issue and must be specified in the UTF-16 protocol, such as with a byte-order mark (BOM).
- If an odd number of bytes is missing from UTF-16, the whole rest of the string will be meaningless text. Any bytes missing from UTF-8 will still allow the text to be recovered accurately starting with the next character after the missing bytes.
Encoding
This section may overuse or misuse colour, making it hard to understand for colour-blind users. Please remove or fix instances of distracting or hard-to-read colours or remove coloured links that may impede users' ability to distinguish links from regular text, or links coloured for purely aesthetic reasons. See the guides to editing for accessibility of contrast and colour. |
UTF-8 encodes code points in one to four bytes, depending on the value of the code point. In the following table, the x characters are replaced by the bits of the code point:
First code point | Last code point | Byte 1 | Byte 2 | Byte 3 | Byte 4 |
---|---|---|---|---|---|
U+0000 | U+007F | 0xxxxxxx | |||
U+0080 | U+07FF | 110xxxxx | 10xxxxxx | ||
U+0800 | U+FFFF | 1110xxxx | 10xxxxxx | 10xxxxxx | |
U+010000 | U+10FFFF | 11110xxx | 10xxxxxx | 10xxxxxx | 10xxxxxx |
The first 128 code points (ASCII) need 1 byte. The next 1,920 code points need two bytes to encode, which covers the remainder of almost all Latin-script alphabets, and also IPA extensions, Greek, Cyrillic, Coptic, Armenian, Hebrew, Arabic, Syriac, Thaana and N'Ko alphabets, as well as Combining Diacritical Marks. Three bytes are needed for the remaining 61,440 codepoints of the Basic Multilingual Plane (BMP), including most Chinese, Japanese and Korean characters. Four bytes are needed for the 1,048,576 codepoints in the other planes of Unicode, which include emoji (pictographic symbols), less common CJK characters, various historic scripts, and mathematical symbols.
A whole graphic character can take more than 4 bytes, because it is made of more than one code point. For instance, a national flag character takes 8 bytes since it is "constructed from a pair of Unicode scalar values" both from outside the BMP. Some complex emoji characters can take even more than this: The transgender flag emoji (🏳️⚧️), which consists of the 5 code point sequence U+1F3F3 U+FE0F U+200D U+26A7 U+FE0F, requires sixteen bytes to encode, while that for the flag of Scotland (🏴) requires a total of 28 bytes for the 7 code point sequence U+1F3F4 U+E0067 U+E0062 U+E0073 U+E0063 U+E0074 U+E007F.
Invalid sequences and error handling
Not all sequences of bytes are valid UTF-8. A UTF-8 decoder should be prepared for:
- invalid bytes
- an unexpected continuation byte
- a non-continuation byte before the end of the character
- the string ending before the end of the character (which can happen in simple string truncation)
- an overlong encoding
- a sequence that decodes to an invalid code point
Many of the first UTF-8 decoders would decode these, ignoring incorrect bits and accepting overlong results. Carefully crafted invalid UTF-8 could make them either skip or create ASCII characters such as NUL, slash, or quotes. Invalid UTF-8 has been used to bypass security validations in high-profile products including Microsoft's IIS web server and Apache's Tomcat servlet container.RFC 3629 states "Implementations of the decoding algorithm MUST protect against decoding invalid sequences." The Unicode Standard requires decoders to: "... treat any ill-formed code unit sequence as an error condition. This guarantees that it will neither interpret nor emit an ill-formed code unit sequence."
Since RFC 3629 (November 2003), the high and low surrogate halves used by UTF-16 (U+D800 through U+DFFF) and code points not encodable by UTF-16 (those after U+10FFFF) are not legal Unicode values, and their UTF-8 encoding must be treated as an invalid byte sequence. Not decoding unpaired surrogate halves makes it impossible to store invalid UTF-16 (such as Windows filenames or UTF-16 that has been split between the surrogates) as UTF-8, while it is possible with WTF-8.
Some implementations of decoders throw exceptions on errors. This has the disadvantage that it can turn what would otherwise be harmless errors (such as a "no such file" error) into a denial of service. For instance early versions of Python 3.0 would exit immediately if the command line or environment variables contained invalid UTF-8.
Since Unicode 6 (October 2010), the standard (chapter 3) has recommended a "best practice" where the error is either one byte long, or ends before the first byte that is disallowed. In these decoders E1,A0,C0 is two errors (2 bytes in the first one). This means an error is no more than three bytes long and never contains the start of a valid character, and there are 21952 different possible errors. The standard also recommends replacing each error with the replacement character "�" (U+FFFD).
These recommendations are not often followed. It is common to consider each byte to be an error, in which case E1,A0,C0 is three errors (each 1 byte long). This means there are only 128 different errors, and it is also common to replace them with 128 different characters, to make the decoding "lossless".
Byte-order mark
If the Unicode byte-order mark (BOM, U+FEFF, technically the U+FEFF ZERO WIDTH NO-BREAK SPACE character) is at the start of a UTF-8 file, the first three bytes will be 0xEF, 0xBB, 0xBF.
The Unicode Standard neither requires nor recommends the use of the BOM for UTF-8, but warns that it may be encountered at the start of a file trans-coded from another encoding. While ASCII text encoded using UTF-8 is backward compatible with ASCII, this is not true when Unicode Standard recommendations are ignored and a BOM is added. A BOM can confuse software that isn't prepared for it but can otherwise accept UTF-8, e.g. programming languages that permit non-ASCII bytes in string literals but not at the start of the file. Nevertheless, there was and still is software that always inserts a BOM when writing UTF-8, and refuses to correctly interpret UTF-8 unless the first character is a BOM (or the file only contains ASCII).
Implementations and adoption
See also: Popularity of text encodingsUTF-8 has been the most common encoding for the World Wide Web since 2008. As of September 2024, UTF-8 is used by 98.3% of surveyed web sites. Although many pages only use ASCII characters to display content, very few websites now declare their encoding to only be ASCII instead of UTF-8. Over 50% of the languages tracked have 100% UTF-8 use.
Many standards only support UTF-8, e.g. JSON exchange requires it (without a byte-order mark (BOM)). UTF-8 is also the recommendation from the WHATWG for HTML and DOM specifications, and stating "UTF-8 encoding is the most appropriate encoding for interchange of Unicode" and the Internet Mail Consortium recommends that all e‑mail programs be able to display and create mail using UTF-8. The World Wide Web Consortium recommends UTF-8 as the default encoding in XML and HTML (and not just using UTF-8, also declaring it in metadata), "even when all characters are in the ASCII range ... Using non-UTF-8 encodings can have unexpected results".
Lots of software has the ability to read/write UTF-8. It may though require the user to change options from the normal settings, or may require a BOM (byte-order mark) as the first character to read the file. Examples of software supporting UTF-8 include Microsoft Word, Microsoft Excel (2016 and later), Google Drive, LibreOffice and most databases.
Some software can only read and write UTF-8 (or at least does not require a BOM). Windows Notepad, in all currently supported versions of Windows, defaults to writing UTF-8 without a BOM (a change from the outdated / unsupported Windows 7 Notepad), bringing it into line with most other text editors. Some system files on Windows 11 require UTF-8 with no requirement for a BOM, and almost all files on macOS and Linux are required to be UTF-8 without a BOM. Java 18 defaults to reading and writing files as UTF-8, and in older versions (e.g. LTS versions) only the NIO API was changed to do so. Many other programming languages default to UTF-8 for I/O, including Ruby 3.0 and R 4.2.2. All current versions of Python support UTF-8 for I/O, even on Windows (where it is opt-in for the open()
function), and plans exist to make UTF-8 I/O the default in Python 3.15 on all platforms. C++23 adopts UTF-8 as the only portable source code file format (surprisingly there was none before).
Backwards compatibility is a serious impediment to changing code to use UTF-8 instead of a 16-bit encoding, but this is happening. The default string primitive in Go, Julia, Rust, Swift 5, and PyPy uses UTF-8 internally in all cases. Python 3.3 uses UTF-8 internally for Python C API extensions and sometimes for strings and a future version of Python is planned to store strings as UTF-8 by default. Modern versions of Microsoft Visual Studio use UTF-8 internally. Microsoft's SQL Server 2019 added support for UTF-8, and using it results in a 35% speed increase, and "nearly 50% reduction in storage requirements."
All currently supported Windows versions support UTF-8 in some way (including Xbox); partial support has existed since at least Windows XP. As of May 2019, Microsoft has reversed its previous position of only recommending UTF-16; the capability to set UTF-8 as the "code page" for the Windows API was introduced; and Microsoft recommends programmers use UTF-8, and even states "UTF-16 is a unique burden that Windows places on code that targets multiple platforms".
The Java programming language includes Modified UTF-8 (MUTF-8), in which the null character (U+0000) uses the two-byte overlong encoding 11000000 10000000 (hexadecimal C0 80), instead of 00000000 (hexadecimal 00). Modified UTF-8 strings never contain any actual null bytes but can contain all Unicode code points including U+0000, which allows such strings (with a null byte appended) to be processed by traditional null-terminated string functions. All known Modified UTF-8 implementations also treat the surrogate pairs as in CESU-8. In normal usage, the language supports standard UTF-8 when reading and writing strings through InputStreamReader
and OutputStreamWriter
(if it is the platform's default character set or as requested by the program). However it uses Modified UTF-8 for object serialization among other applications of DataInput
and DataOutput
, for the Java Native Interface, and for embedding constant strings in class files. The dex format defined by Dalvik also uses the same modified UTF-8 to represent string values. Tcl also uses the same modified UTF-8 as Java for internal representation of Unicode data, but uses strict CESU-8 for external data.
Version 3 of the Python programming language treats each byte of an invalid UTF-8 bytestream as an error (see also changes with new UTF-8 mode in Python 3.7); this gives 128 different possible errors. Extensions have been created to allow any byte sequence that is assumed to be UTF-8 to be losslessly transformed to UTF-16 or UTF-32, by translating the 128 possible error bytes to reserved code points, and transforming those code points back to error bytes to output UTF-8. The most common approach is to translate the codes to U+DC80...U+DCFF which are low (trailing) surrogate values and thus "invalid" UTF-16, as used by Python's PEP 383 (or "surrogateescape") approach. Another encoding called MirBSD OPTU-8/16 converts them to U+EF80...U+EFFF in a Private Use Area. In either approach, the byte value is encoded in the low eight bits of the output code point. These encodings are very useful because they avoid the need to deal with "invalid" byte strings until much later, if at all, and allow "text" and "data" byte arrays to be the same object. If a program wants to use UTF-16 internally these are required to preserve and use filenames that can use invalid UTF-8; as the Windows filesystem API uses UTF-16, the need to support invalid UTF-8 is less there. For the encoding to be reversible, the standard UTF-8 encodings of the code points used for erroneous bytes must be considered invalid. This makes the encoding incompatible with WTF-8 or CESU-8 (though only for 128 code points). When re-encoding it is necessary to be careful of sequences of error code points which convert back to valid UTF-8, which may be used by malicious software to get unexpected characters in the output, though this cannot produce ASCII characters so it is considered comparatively safe, since malicious sequences (such as cross-site scripting) usually rely on ASCII characters.
Standards
There are several current definitions of UTF-8 in various standards documents:
- RFC 3629 / STD 63 (2003), which establishes UTF-8 as a standard internet protocol element
- RFC 5198 defines UTF-8 NFC for Network Interchange (2008)
- ISO/IEC 10646:2014 §9.1 (2014)
- The Unicode Standard, Version 15.0.0 (2022)
They supersede the definitions given in the following obsolete works:
- The Unicode Standard, Version 2.0, Appendix A (1996)
- ISO/IEC 10646-1:1993 Amendment 2 / Annex R (1996)
- RFC 2044 (1996)
- RFC 2279 (1998)
- The Unicode Standard, Version 3.0, §2.3 (2000) plus Corrigendum #1 : UTF-8 Shortest Form (2000)
- Unicode Standard Annex #27: Unicode 3.1 (2001)
- The Unicode Standard, Version 5.0 (2006)
- The Unicode Standard, Version 6.0 (2010)
They are all the same in their general mechanics, with the main differences being on issues such as allowed range of code point values and safe handling of invalid input.
See also
- Alt code – Input method used with MSDOS and Windows
- Character encodings in HTML – Use of encoding systems for international characters in HTML
- Comparison of Unicode encodings
- GB 18030 – Official Chinese character encoding
- Iconv – Standard UNIX utility
- Specials (Unicode block) – Unicode block containing some special codepoints and two non-characters
- Unicode and email – Relationship between Unicode and email
- Unicode and HTML – Relationship between Unicode characters and HTML
- UTF-EBCDIC – Character encoding for Unicode compatible with EBCDIC
References
- "Chapter 2. General Structure". The Unicode Standard (6.0 ed.). Mountain View, California, US: The Unicode Consortium. ISBN 978-1-936213-01-6.
- Pike, Rob (30 April 2003). "UTF-8 history".
- Pike, Rob; Thompson, Ken (1993). "Hello World or Καλημέρα κόσμε or こんにちは 世界" (PDF). Proceedings of the Winter 1993 USENIX Conference.
- "File System Safe UCS - Transformation Format (FSS-UTF) - X/Open Preliminary Specification" (PDF). unicode.org.
- "USENIX Winter 1993 Conference Proceedings". usenix.org.
- ^ Alvestrand, Harald T. (January 1998). IETF Policy on Character Sets and Languages. IETF. doi:10.17487/RFC2277. BCP 18. RFC 2277.
- ^ "UTF-8 support in the Microsoft GDK". learn.microsoft.com. Microsoft Game Development Kit (GDK). Retrieved 2023-03-05.
- ^ "Encoding Standard". encoding.spec.whatwg.org. Retrieved 2020-04-15.
- ^ "Usage Survey of Character Encodings broken down by Ranking". W3Techs. Retrieved 2024-09-03.
- "Appendix F. FSS-UTF / File System Safe UCS Transformation format" (PDF). The Unicode Standard 1.1. Archived (PDF) from the original on 2016-06-07. Retrieved 2016-06-07.
- Whistler, Kenneth (2001-06-12). "FSS-UTF, UTF-2, UTF-8, and UTF-16". Archived from the original on 2016-06-07. Retrieved 2006-06-07.
- ^ Pike, Rob (2003-04-30). "UTF-8 history". Retrieved 2012-09-07.
- Pike, Rob (2012-09-06). "UTF-8 turned 20 years old yesterday". Retrieved 2012-09-07.
- "Encoding Standard § 4.2. Names and labels". WHATWG. Retrieved 2018-04-29.
- "Character Sets". Internet Assigned Numbers Authority. 2013-01-23. Retrieved 2013-02-08.
- Liviu (2014-02-07). "UTF-8 codepage 65001 in Windows 7 - part I". Retrieved 2018-01-30.
Previously under XP (and, unverified, but probably Vista, too) for loops simply did not work while codepage 65001 was active
- "MySQL :: MySQL 8.0 Reference Manual :: 10.9.1 The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)". MySQL 8.0 Reference Manual. Oracle Corporation. Retrieved 2023-03-14.
- "MySQL :: MySQL 8.0 Reference Manual :: 10.9.2 The utf8mb3 Character Set (3-Byte UTF-8 Unicode Encoding)". MySQL 8.0 Reference Manual. Oracle Corporation. Retrieved 2023-02-24.
- "HP PCL Symbol Sets | Printer Control Language (PCL & PXL) Support Blog". 2015-02-19. Archived from the original on 2015-02-19. Retrieved 2018-01-30.
- "Database Globalization Support Guide". docs.oracle.com. Retrieved 2023-03-16.
- "BOM". suikawiki (in Japanese). Archived from the original on 2009-01-17.
- Davis, Mark. "Forms of Unicode". IBM. Archived from the original on 2005-05-06. Retrieved 2013-09-18.
- "String". Apple Developer. Retrieved 2021-03-15.
- Marin, Marvin (2000-10-17). Windows NT UNICODE vulnerability analysis. Web server folder traversal. SANS Institute (Report). Malware FAQ. MS00-078. Archived from the original on Aug 27, 2014.
- "CVE-2008-2938". National Vulnerability Database (nvd.nist.gov). U.S. National Institute of Standards and Technology. 2008.
- Cite error: The named reference
rfc3629
was invoked but never defined (see the help page). - "Change Windows filesystem encoding to UTF-8". Python.org. PEP 529. Retrieved 2022-05-10.
- "DataInput". docs.oracle.com. Java Platform SE 8). Retrieved 2021-03-24.
- "Non-decodable bytes in system character interfaces". python.org. 2009-04-22. Retrieved 2014-08-13.
- Unicode 6.0.0. unicode.org (Report). October 2010.
- ^ von Löwis, Martin (2009-04-22). "Non-decodable Bytes in System Character Interfaces". Python Software Foundation. PEP 383.
- "Chapter 2" (PDF), The Unicode Standard - Version 15.0.0, p. 39
- "UTF-8 and Unicode FAQ for Unix/Linux".
- Davis, Mark (2012-02-03). "Unicode over 60 percent of the web". Official Google blog. Archived from the original on 2018-08-09. Retrieved 2020-07-24.
- Davis, Mark (2008-05-05). "Moving to Unicode 5.1". Official Google blog. Retrieved 2023-03-13.
- "Usage statistics and market share of ASCII for websites". W3Techs. January 2024. Retrieved 2024-01-01.
- Bray, Tim (December 2017). Bray, Tim (ed.). The JavaScript Object Notation (JSON) Data Interchange Format. IETF. doi:10.17487/RFC8259. RFC 8259. Retrieved 16 February 2018.
- "Using International Characters in Internet Mail". Internet Mail Consortium. 1998-08-01. Archived from the original on 2007-10-26. Retrieved 2007-11-08.
- "Encoding Standard". encoding.spec.whatwg.org. Retrieved 2018-11-15.
- "Specifying the document's character encoding". HTML 5.2 (Report). World Wide Web Consortium. 14 December 2017. Retrieved 2018-06-03.
- "Choose text encoding when you open and save files". Microsoft Support (support.microsoft.com). Retrieved 2021-11-01.
- "UTF-8 - Character encoding of Microsoft Word
DOC
andDOCX
files?". Stack Overflow. Retrieved 2021-11-01. - "Exporting a UTF-8
.txt
file from Word". support.3playmedia.com. - "Are
XLSX
files UTF-8 encoded, by definition?". Stack Overflow. Excel. Retrieved 2021-11-01. - Abhinav, Ankit; Xu, Jazlyn (April 13, 2020). "How to open UTF-8
CSV
file in Excel without mis-conversion of characters in Japanese and Chinese language for both Mac and Windows?". Microsoft Support Community. Retrieved 2021-11-01. - Galloway, Matt (October 2012). "Character encoding for iOS developers; or, UTF-8 what now?". www.galloway.me.uk. Retrieved 2021-01-02.
... in reality, you usually just assume UTF-8 since that is by far the most common encoding.
- "Windows 10 Notepad is getting better UTF-8 encoding support". BleepingComputer. Retrieved 2021-03-24.
Microsoft is now defaulting to saving new text files as UTF-8 without BOM, as shown below.
- "Customize the Windows 11 Start menu". docs.microsoft.com. Retrieved 2021-06-29.
Make sure your LayoutModification.json uses UTF-8 encoding.
- "UTF-8 by default". openjdk.java.net. JEP 400. Retrieved 2022-03-30.
- "Set default for Encoding.default_external to UTF-8 on Windows". Ruby Issue Tracking System (bugs.ruby-lang.org). Ruby master. Feature #16604. Retrieved 2022-08-01.
- "Feature #12650: Use UTF-8 encoding for ENV on Windows". Ruby Issue Tracking System (bugs.ruby-lang.org). Ruby master. Retrieved 2022-08-01.
- "New features in R 4.2.0". R bloggers (r-bloggers.com). The Jumping Rivers Blog. 2022-04-01. Retrieved 2022-08-01.
- "add a new UTF-8 mode". peps.python.org. PEP 540. Retrieved 2022-09-23.
- "Make UTF-8 mode default". peps.python.org. PEP 686. Retrieved 2023-07-26.
- "Add optional
EncodingWarning
". Python.org. PEP 597. Retrieved 2021-08-24. - Support for UTF-8 as a portable source file encoding (PDF). open-std.org (Report). 2022. p2295r6.
- "Source code representation". The Go Programming Language Specification. golang.org (Report). Retrieved 2021-02-10.
- Tsai, Michael J. (21 March 2019). "UTF-8 string in Swift 5" (blog post). Retrieved 2021-03-15.
- "PyPy v7.1 released; now uses UTF-8 internally for Unicode strings". Mattip. PyPy status blog. 2019-03-24. Retrieved 2020-11-21.
- ^ "Flexible String Representation". Python.org. PEP 393. Retrieved 2022-05-18.
- "Common Object Structures". Python documentation. Retrieved 2024-05-29.
- "Unicode objects and codecs". Python documentation. Retrieved 2023-08-19.
UTF-8 representation is created on demand and cached in the Unicode object.
- "PEP 623 – remove wstr from Unicode". Python.org. Retrieved 2020-11-21.
- Wouters, Thomas (2023-07-11). "Python 3.12.0 beta 4 released". Python Insider (pythoninsider.blogspot.com) (blog post). Retrieved 2023-07-26.
The deprecated
wstr
andwstr_length
members of the C implementation of unicode objects were removed, per PEP 623. - "validate-charset (validate for compatible characters)". docs.microsoft.com. Retrieved 2021-07-19.
Visual Studio uses UTF-8 as the internal character encoding during conversion between the source character set and the execution character set.
- "Introducing UTF-8 support for SQL Server". techcommunity.microsoft.com. 2019-07-02. Retrieved 2021-08-24.
- "Use the Windows UTF-8 code page – UWP applications". docs.microsoft.com. Retrieved 2020-06-06.
- "Java SE documentation for Interface java.io.DataInput, subsection on Modified UTF-8". Oracle Corporation. 2015. Retrieved 2015-10-16.
- "The Java Virtual Machine Specification, section 4.4.7: "The CONSTANT_Utf8_info Structure"". Oracle Corporation. 2015. Retrieved 2015-10-16.
- "Java Object Serialization Specification, chapter 6: Object Serialization Stream Protocol, section 2: Stream Elements". Oracle Corporation. 2010. Retrieved 2015-10-16.
- "Java Native Interface Specification, chapter 3: JNI Types and Data Structures, section: Modified UTF-8 Strings". Oracle Corporation. 2015. Retrieved 2015-10-16.
- "The Java Virtual Machine Specification, section 4.4.7: "The CONSTANT_Utf8_info Structure"". Oracle Corporation. 2015. Retrieved 2015-10-16.
- "ART and Dalvik". Android Open Source Project. Archived from the original on 2013-04-26. Retrieved 2013-04-09.
- "UTF-8 bit by bit". Tcler's Wiki. 2001-02-28. Retrieved 2022-09-03.
- "PEP 540 -- Add a new UTF-8 Mode". Python.org. Retrieved 2021-03-24.
- "RTFM optu8to16(3), optu8to16vis(3)". www.mirbsd.org.
- ^ Davis, Mark; Suignard, Michel (2014). "3.7 Enabling Lossless Conversion". Unicode Security Considerations. Unicode Technical Report #36.
- ISO/IEC 10646:2014 §9.1, 2014.
- The Unicode Standard, Version 15.0 §3.9 D92, §3.10 D95, 2021.
- Unicode Standard Annex #27: Unicode 3.1, 2001.
- The Unicode Standard, Version 5.0 §3.9–§3.10 ch. 3, 2006.
- The Unicode Standard, Version 6.0 §3.9 D92, §3.10 D95, 2010.
External links
- Original UTF-8 paper (or pdf) for Plan 9 from Bell Labs
- History of UTF-8 by Rob Pike
- Characters, Symbols and the Unicode Miracle on YouTube
Character encodings | |
---|---|
Early telecommunications | |
ISO/IEC 8859 |
|
Bibliographic use | |
National standards | |
ISO/IEC 2022 | |
Mac OS Code pages ("scripts") | |
DOS code pages | |
IBM AIX code pages | |
Windows code pages | |
EBCDIC code pages | |
DEC terminals (VTx) | |
Platform specific |
|
Unicode / ISO/IEC 10646 | |
TeX typesetting system | |
Miscellaneous code pages | |
Control character | |
Related topics | |
Character sets |
Rob Pike | |
---|---|
Operating systems | |
Programming languages | |
Software | |
Publications | |
Other |
Ken Thompson | |
---|---|
Operating systems | |
Programming languages | |
Software | |
Associated institutions | |
Other |