Misplaced Pages

List of largest stars: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 18:02, 7 December 2024 view sourceSpaceImplorerExplorerImplorer (talk | contribs)Extended confirmed users2,858 edits Milky Way← Previous edit Revision as of 18:09, 7 December 2024 view source SpaceImplorerExplorerImplorer (talk | contribs)Extended confirmed users2,858 edits Lists: For other galaxiesNext edit →
Line 947: Line 947:
! style="background:#efefef" | Method{{efn|name=methods}} ! style="background:#efefef" | Method{{efn|name=methods}}
! style="background:#efefef" | Notes ! style="background:#efefef" | Notes
|- style="background:#e6e6e6" class="sortbottom"
|Theoretical limit of star size (Large Magellanic Cloud)
|≳1,550<ref name=Healy2024 />
|
|Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of supernova progenitor candidates. Assumes an effective temperature of 3545 K.<br><small>Reported for reference</small><br />
|- |-
|HV 888 |HV 888
Line 1,031: Line 1,036:
|L/T<sub>eff</sub> |L/T<sub>eff</sub>
| |
|- style="background:#e6e6e6" class="sortbottom"
|Theoretical limit of star size (Small Magellanic Cloud)
|≳1,050<ref name=Healy2024 />
|
|Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of supernova progenitor candidates. Assumes an effective temperature of 3850 K.<br><small>Reported for reference</small><br />
|- |-
{{list of largest stars row|star_name=MSX LMC 947|L=61075|temp=2800|galaxy=Large Magellanic Cloud|ref=<ref name="Groenewegen2018" />|notes=}} {{list of largest stars row|star_name=MSX LMC 947|L=61075|temp=2800|galaxy=Large Magellanic Cloud|ref=<ref name="Groenewegen2018" />|notes=}}
Line 1,655: Line 1,665:
! style="background:#efefef" | Method{{efn|name=methods}} ! style="background:#efefef" | Method{{efn|name=methods}}
! style="background:#efefef" | Notes ! style="background:#efefef" | Notes
|- style="background:#e6e6e6" class="sortbottom"
|Theoretical limit of star size (M31)
|≳1,750<ref name=Healy2024 />
|
|Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of supernova progenitor candidates. Assumes an effective temperature of 3625 K.<br><small>Reported for reference</small><br />
|- |-
{{list of largest stars row|star_name=LGGS J013339.28+303118.8|logL=5.68|temp=10^3.584|galaxy=]|ref=<ref name="Drout-2012" />|notes= }} {{list of largest stars row|star_name=LGGS J013339.28+303118.8|logL=5.68|temp=10^3.584|galaxy=]|ref=<ref name="Drout-2012" />|notes= }}
|- style="background:#e6e6e6" class="sortbottom"
|Theoretical limit of star size (M33)
|≳1,500<ref name=Healy2024 />
|
|Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of supernova progenitor candidates. Assumes an effective temperature of 3605 K.<br><small>Reported for reference</small><br />
|- |-
|LGGS J004428.48+415130.9 |LGGS J004428.48+415130.9

Revision as of 18:09, 7 December 2024

Not to be confused with List of most massive stars.

Below are lists of the largest stars currently known, ordered by radius and separated into categories by galaxy. The unit of measurement used is the radius of the Sun (approximately 695,700 km; 432,300 mi).

The Sun, the orbit of Earth, Jupiter, and Neptune, compared to four stars (Pistol Star, Rho Cassiopeiae, Betelgeuse, and VY Canis Majoris)

Overview

Although red supergiants are often considered the largest stars, some other star types have been found to temporarily increase significantly in radius, such as during LBV eruptions or luminous red novae. Luminous red novae appear to expand extremely rapidly, reaching thousands to tens of thousands of solar radii within only a few months, significantly larger than the largest red supergiants.

Some studies use models that predict high-accreting Population III or Population I supermassive stars (SMSs) in the very early universe could have evolved "red supergiant protostars". These protostars are thought to have accretion rates larger than the rate of contraction, resulting in lower temperatures but with radii reaching up to many tens of thousands of R, comparable to some of the largest known black holes.

Angular diameters

The angular diameters of stars can be measured directly using stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a few supergiants can be occulted by the Moon, including Antares and 119 Tauri. Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (opacity) differs depending on the wavelength of light in which the star is observed.

Uncertainties remain with the membership and order of the lists, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or be within a large range of values. Values for stellar radii vary significantly in different sources and for different observation methods.

All the sizes stated in these lists have inaccuracies and may be disputed. The lists are still a work in progress and parameters are prone to change.

Caveats

Various issues exist in determining accurate radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:

  • Stellar radii or diameters are usually derived only approximately using the Stefan–Boltzmann law for the deduced stellar luminosity and effective surface temperature.
  • Stellar distances, and their errors, for most stars, remain uncertain or poorly determined.
  • Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii.
  • Other direct methods for determining stellar radii rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars.
  • Many distance estimates for red supergiants come from stellar cluster or association membership, because it is difficult to calculate accurate distances for red supergiants that are not part of any cluster or association.
  • In these lists are some examples of extremely distant extragalactic stars, which may have slightly different properties and natures than the currently largest known stars in the Milky Way. For example, some red supergiants in the Magellanic Clouds are suspected to have slightly different limiting temperatures and luminosities. Such stars may exceed accepted limits by undergoing large eruptions or changing their spectral types over just a few months (or potentially years).

Lists

This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by adding missing items with reliable sources.

The following lists show the largest known stars based on the host galaxy.

Milky Way

This list is incomplete; you can help by adding missing items. (January 2016)
List of the largest known stars in the Milky Way
Star name Solar radius (R) Method Notes
Orbit of Saturn 2,047–2,049.9 Reported for reference
Theoretical limit of star size (Milky Way) ≳1,700 Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of supernova progenitor candidates. Assumes an effective temperature of 3605 K.
Reported for reference
RSGC1-F01 1,530 ± 365 L/Teff
VX Sagittarii 1,480+180
−160
AD The most luminous known asymptotic giant branch star. Widely recognised as being among the largest known stars. Another study found a radius of 1,400+500
−400 R, however it was derived using a very uncertain bolometric magnitude.
VY Canis Majoris 1,420±120 AD An extreme oxygen-rich red hypergiant that has experienced two dimming periods in the 20th century where the star became dimmer by up to 2.5 magnitudes. Potentially the largest known star in the Milky Way.
There is a possilbility that this size might be a bit overestimated (on the order of 1 sigma). Hence, the quoted radius might be just an upper limit.
AH Scorpii 1,411±124 AD
RSGC1-F06 1,382 ± 331 L/Teff
S Persei 1,364±6 AD
NML Cygni <1,350+195
−229
AD Surrounding dusty region is very complex making the radius hard to determine.
Stephenson 2 DFK 2 1,301 ± 285 L/Teff Another red supergiant, Stephenson 2 DFK 1 has an estimated radius of 2,150 R. However, it is potentially not a member of the Stephenson 2 cluster and also has a distance with an uncertainty of ≳50% due to it only being measured with radial velocities.
Stephenson 2 DFK 49 1,300 ± 283 L/Teff A K-type star similar to the yellow hypergiant IRC +10420 that has left its red supergiant stage.
HD 143183 (V558 Normae) 1,261 L/Teff
PZ Cassiopeiae 1,259 – 1,336, 1,585+160
−120
L/Teff & AD
μ Cephei (Herschel's Garnet Star) 1,259, 1,420, 1,426
−119
L/Teff & AD Widely recognised as being among the largest known stars. Might be the largest star visible to the naked eye.
RSGC1-F10 1,246 ± 292 L/Teff
V354 Cephei 1,245 L/Teff
Westerlund 1 W237 (Westerlund 1 BKS B) 1,241±70 L/Teff
ST Cephei 1,218 L/Teff
IRC -10414 ~1,200 L/Teff
V517 Monocerotis 1,196+80
−159
L/Teff
RSGC1-F05 1,185 ± 312 L/Teff
GCIRS 7 1,170±60, 1,359, 1,368 AD & L/Teff
Westerlund 1 W26 (Westerlund 1 BKS AS) 1,165±58–1,221±120 L/Teff
EV Carinae 1,165 L/Teff
16 1,157 L/Teff
WY Velorum A 1,157 L/Teff A symbiotic binary.
RSGC1-F08 1,150 ± 259 L/Teff
RSGC1-F02 1,128 ± 262 L/Teff
Orbit of Jupiter 1,114.5–1,115.8 Reported for reference
V582 Cassiopeiae 1,111 L/Teff
RW Cygni 1,103+251
−177
AD
RW Cephei 1,100±40 AD A K-type hypergiant star that experienced a "great dimming" event in 2022, similar to Betelgeuse.
RT Carinae 1,090 L/Teff
RSGC1-F04 1,082, 1,100, 1,422+305
−390
L/Teff
UU Persei 1,079+9
−8
L/Teff
LL Pegasi 1,074 L/Teff
HD 126577 1,066+9
−32
L/Teff
V766 Centauri Aa 1,060–1,160 ? V766 Centauri Aa is a rare variable yellow hypergiant.
HaroChavira 1 1,058 L/Teff
CM Velorum 1,048 – 1,416.24+0.40
−0.96
L/Teff
AG Camelopardalis 1,048 L/Teff
SU Persei [pt] 1,044+31
−21 – 1,139+34
−23,
AD
SW Cephei 1,035+75
−120
AD
KY Cygni 1,032 L/Teff
RSGC1-F11 1,032 ± 232 L/Teff
BC Cygni 1,031–1,187+34
−37
L/Teff A more detailed but older study gives values of 1,081 R (856–1,375) for the year 2000, and 1,303 R (1,021–1,553) for the year 1900.
MY Cephei 1,028 ± 169 – 1,138 ± 387 L/Teff
V346 Puppis 1,025 L/Teff
V530 Cassiopeiae 1,017 L/Teff
RSGC1-F13 1,017 ± 246 L/Teff
V602 Carinae 1,015 AD
VV Cephei A 1,015 AD A red supergiant star orbited by a smaller B-type main-sequence star with a radius estimated between 13 and 25 R. Widely recognised as being among the largest known stars. Another estimate give a radius of 660 R based on the Gaia DR3 distance of 1 kpc.
U Lacertae A 1,013 L/Teff
KW Sagittarii 1,009±142 AD
Ve 4-64 1,007 L/Teff
RSGC1-F07 1,006 ± 238 L/Teff
V349 Carinae 1,002+12
−74
L/Teff
V674 Cephei 999 L/Teff
RSGC1-F09 996 ± 498 L/Teff
IRAS 18111-2257 ~990 – 1,200 L/Teff Estimated based on the bolometric luminosity (14,000–20,000 L) and assumed effective temperature of 2,000 K. Another period-luminosity-derived luminosity for this star results in a radius of 1,730 R.
CZ Hydrae 986 L/Teff
CIT 11 982 L/Teff
V381 Cephei Aa 977 L/Teff
MSX6C G086.5890–00.7718 (975+175
−183–1,035+186
−158)–1,196.91+6.31
−6.35
L/Teff Lower values based on the Gaia DR3 effective temperature and the luminosity of Levesque et al. (2005) and that of Messineo & Brown (2019). Higher value based on the GSP Phot-Aeneas library using BR/RP spectra in Gaia DR3.
V3953 Sagittarii (IRC −30398) 970 L/Teff
V396 Centauri 965 L/Teff
UW Aquilae 964 L/Teff
RSGC1-F12 955 ± 226 L/Teff
RSGC1-F03 942 ± 196 L/Teff
V398 Cassiopeiae (HD 240275) 941 L/Teff
IRC +60342 940 L/Teff
ψ Aurigae 934 L/Teff
GX Monocerotis 931 L/Teff
V645 Cephei 920 L/Teff
S Cassiopeiae 920 L/Teff One of the coolest known stars, at an effective temperature of 1800 K (1500 °C).
NV Aurigae (IRC +50137) 918 L/Teff
Stephenson 2 DFK 5 911 ± 182 L/Teff
UY Scuti 909 L/Teff Initially reported 1,708 R, making it the largest star, a 2023 measurement put the radius at a smaller value of 909 R based on the multimessenger monitoring of supernovae.
NR Vulpeculae 908 – 923+62
−50
L/Teff
KU Andromedae (IRC +40004) 900 – 1,044

L/Teff
V774 Sagittarii 889 L/Teff
V923 Centauri 881 L/Teff
IRAS 20341+4047 880 L/Teff
V540 Sagittarii 880 L/Teff
V386 Cephei 879 L/Teff
Trumpler 27-1 (CD-33 12241) 876+5
−12
?
T Lyrae 876 L/Teff
TYC 3996-552-2 870 L/Teff
V1300 Aquilae (IRC −10529) 858–1,059

L/Teff
V1417 Aquilae 866 L/Teff
Westerlund 1 W20 (Westerlund 1 BKS D) 858±48 L/Teff
FX Serpentis 857 L/Teff
AZ Cygni 856+20
−14 – 927+21
−15
AD Estimated based on data from the CHARA array. Another radii of 890+21
−15 R (2014), 895+21
−15 R (2015) and 890+21
−15 R (2016) are calculated based on the same data.
V348 Velorum 855 L/Teff
Stephenson 2 DFK 3 965 ± 208 L/Teff
BI Cygni 852+12
−9 – 908+12
−10
AD
TW Carinae 835 L/Teff
V358 Cassiopeiae 835 L/Teff
VLH96 A 833 L/Teff
DO 26226 826 L/Teff
HD 155737 823 L/Teff
6 Geminorum 821 L/Teff
RW Leonis Minoris

820 – 1,028

L/Teff
HaroChavira 2 813 L/Teff
HD 300933 806 L/Teff
R 53 801 L/Teff
U Arietis 801±205 AD
RT Ophiuchi 801±217 AD
HD 95687 797 L/Teff
BO Carinae 790±158 L/Teff
HD 62745 790 L/Teff
WX Piscium 790 – 1,044 L/Teff
VR5–7 775 ± 65 L/Teff
T Cancri 770 L/Teff
V Cygni 770 L/Teff
CL Carinae 770 L/Teff
RS Persei 770±30, 775+110
−85
AD
V355 Cephei 770±154 – 790 L/Teff
BD+63 3 770 L/Teff
BD+63 270 769 L/Teff
V644 Cephei 765 L/Teff
BM VIII 11 754 L/Teff
2130 752 L/Teff
IRAS 10176-5802 751.2+0.4
−0.6–(793+281
−152–849+172
−133)
L/Teff Lower value based on the GSP Phot-Aeneas library using BR/RP spectra in Gaia DR3. Higher values based on the Gaia DR3 effective temperature and the luminosity of Levesque et al. (2005) and that of Messineo & Brown (2019).
HD 303250 750±150 L/Teff
R Leporis (Hind's Crimson Star) 750 AD Size range from 645 to 860 R.
V384 Persei 750 – 937 L/Teff
V466 Persei 750 L/Teff
V Coronae Borealis 749 L/Teff
GY Aquilae 748 – 920 AD
TT Centauri 744 L/Teff
UU Pegasi 742±193 AD
IM Cassiopeiae 740 L/Teff
GY Camelopardalis 736 L/Teff
RSGC3-S3 735 ± 151 L/Teff
R Andromedae 733 L/Teff
Stephenson 2 DFK 10 730 L/Teff
V1259 Orionis 729 L/Teff
RSGC3-S15 728 ± 138 L/Teff
HD 105563 A 723 L/Teff
Westerlund 1 W75 (Westerlund 1 BKS E) 722±36 L/Teff
V1111 Ophiuchi (IRC +10365) 721 – 902 L/Teff
XX Persei 718+80
−56
AD Another study from the same author estimates 681+12
−9 R.
AI Volantis 717 L/Teff
RX Telescopii 716 L/Teff
V Camelopardalis 716±185 AD
CD-61 3575 716 L/Teff
S Cephei 715 L/Teff
AS Cephei 713 L/Teff
V770 Cassiopeiae (BD+60 299) 713 L/Teff
AZ Cephei 712 L/Teff
MZ Puppis 708 L/Teff
GP Cassiopeiae 707 – 771.74+0.23
−0.86
L/Teff
GCIRS 12N 703 ± 107 L/Teff
V528 Carinae 700±140 L/Teff
The following well-known stars are listed for the purpose of comparison.
Antares (α Scorpii A) 680 AD Fourteenth brightest star in the night sky. Widely recognised as being among the largest known stars.
Betelgeuse (α Orionis) 640, 764+116
−62, 782 ± 55
AD & SEIS Tenth brightest star in the night sky. Widely recognised as being among the largest known stars, radius decreased to ~500 R during the 2020 great dimming event.
R Horologii 635 L/Teff A red giant star with one of the largest ranges in brightness known of stars in the night sky visible to the unaided eye. Despite its large radius, it is less massive than the Sun.
119 Tauri (CE Tauri, Ruby Star) 587 – 593 AD
ρ Cassiopeiae 564±67 – 700±112 AD A yellow hypergiant star, similar to V382 Carinae, that is also visble to the naked eye.
CW Leonis 560 L/Teff The nearest carbon star.
V509 Cassiopeiae 511±112 AD A variable yellow hypergiant whose size varied from around 680 R in 1950–1970 to 910 R in 1977, and later decreased to 390 R in the 1990s.
V382 Carinae
(x Carinae)
485 ± 56 L/Teff A yellow hypergiant, one of the rarest types of stars.
V838 Monocerotis 464 L/Teff During the 2002 Red Nova, the star's radius may have increased up to 3,190 R.
Pistol Star (V4647 Sagittarii) 420 L/Teff One of the most luminous stars known.
La Superba (Y Canum Venaticorum) 344 L/Teff
Mira (ο Ceti A) 332–402 AD Prototype of the Mira variables.
Orbit of Mars 322–323.1 Reported for reference
R Doradus 298±21 AD The extrasolar star with the largest apparent size.
Rasalgethi (α Herculis A) 284±60 (264–303) L/Teff
Cygnus OB2#12 246 ? One of the most massive and luminous stars known.
Orbit of Earth (~1 AU) 214 Reported for reference
Suhail (λ Velorum) 211±6 AD
Wezen (δ Canis Majoris) 188 L/Teff Thirty-sixth brightest star in the night sky.
Enif (ε Pegasi) 178 L/Teff
Orbit of Venus 158.6 Reported for reference
η Carinae A 128 – 742 OD During the 1843 Great Eruption, the star's radius may have increased up to 4,319–6,032 R.
Deneb (α Cygni) 107 – 203±17 AD & ? Eighteenth brightest star in the night sky.
Orbit of Mercury 82.9–84.6 Reported for reference
Rigel (β Orionis A) 74.1+6.1
−7.3
AD Seventh brightest star in the night sky.
Canopus (α Carinae) 73.3 AD Second brightest star in the night sky.
Gacrux (γ Crucis) 73 L/Teff Twenty-sixth brightest star in the night sky.
Polaris (α Ursae Minoris) 46.27±0.42 AD The current star in the North Pole. It is a Classical Cepheid variable, and the brightest example of its class.
Aldebaran (α Tauri) 45.1±0.1 AD Fourteenth brightest star in the night sky.
Arcturus (α Boötis) 25.4 ± 0.2 AD This is the nearest red giant to the Earth, and the fourth brightest star in the night sky.
Pollux (β Geminorum) 9.06 ± 0.03 AD The nearest giant star to the Earth.
Spica (α Virginis A) 7.47±0.54 One of the nearest supernova candidates and the sixteenth-brightest star in the night sky.
Regulus (α Leonis A) 4.16 × 3.14 The nearest B-type star to the Earth.
Vega (α Lyrae) 2.726±0.006 × 2.418±0.012 AD Fifth brightest star in the night sky.
Altair (α Aquilae) 2.01 × 1.57 Twelfth brightest star in the night sky.
Sirius (α Canis Majoris A) 1.713 AD The brightest star in the night sky.
Rigil Kentaurus (α Centauri A) 1.2175 AD Third brightest star in the night sky.
Sun 1 The largest object in the Solar System.

Magellanic Clouds

List of the largest known stars in the Magellanic Clouds
Star name Solar radii
(Sun = 1)
Galaxy Method Notes
Theoretical limit of star size (Large Magellanic Cloud) ≳1,550 Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of supernova progenitor candidates. Assumes an effective temperature of 3545 K.
Reported for reference
HV 888 1,477–1,584 Large Magellanic Cloud L/Teff
HD 269551 A 1,439 Large Magellanic Cloud L/Teff
HV 12463 1,420 Large Magellanic Cloud L/Teff
IRAS 05280–6910 1,367 Large Magellanic Cloud L/Teff The most reddened object in the Large Magellanic Cloud.
MSX LMC 597 1,278–1,444 Large Magellanic Cloud L/Teff
OGLE BRIGHT-LMC-LPV-52 1,275–1,384 Large Magellanic Cloud
HV 2834 1,253 Large Magellanic Cloud L/Teff
LMC 145013 1,243 Large Magellanic Cloud L/Teff
IRAS 05346-6949 1,211 Large Magellanic Cloud L/Teff It has an estimated mass-loss rate of 0.0017 M (566 Earths) per year, the highest for any star.
HV 5618 1,163 Large Magellanic Cloud L/Teff
HV 2242 1,160 – 1,180 Large Magellanic Cloud L/Teff
LMC 25320 1,156 Large Magellanic Cloud L/Teff
SMC 18592 1,129 Small Magellanic Cloud L/Teff
MSX SMC 018 1,119 Small Magellanic Cloud L/Teff
LMC252 1,117–1,164 Large Magellanic Cloud
LMC045 1,112 Large Magellanic Cloud L/Teff
SP77 21-12 1,103 Large Magellanic Cloud L/Teff
MSX LMC 810 1,104 Large Magellanic Cloud L/Teff
WOH S338 1,100 Large Magellanic Cloud L/Teff
LMC 136042 1,092 Large Magellanic Cloud L/Teff
LMC 175188 1,090–1,317 Large Magellanic Cloud
IRAS 04516-6902 1,085 Large Magellanic Cloud L/Teff
WOH S274 1,071 Large Magellanic Cloud L/Teff
D44 1,063 Large Magellanic Cloud L/Teff
HV 12233 1,057 Large Magellanic Cloud L/Teff
MSX LMC 589 1,051 Large Magellanic Cloud L/Teff
Theoretical limit of star size (Small Magellanic Cloud) ≳1,050 Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of supernova progenitor candidates. Assumes an effective temperature of 3850 K.
Reported for reference
MSX LMC 947 1,050 Large Magellanic Cloud L/Teff
LMC 144217 1,039 Large Magellanic Cloud
SP77 31-18 1,038 Large Magellanic Cloud L/Teff
IRAS 05402-6956 1,032 Large Magellanic Cloud L/Teff
IRAS 04509-6922 1,027–1,187 Large Magellanic Cloud L/Teff
HV 2255 1,027–1,236 Large Magellanic Cloud
TRM 36 1,019 Large Magellanic Cloud L/Teff
LMC 175549 1,005 Large Magellanic Cloud L/Teff
TRM 89 1,004–1,526 Large Magellanic Cloud
B90 (WOH S264) 1000+70
−80 – 1,210
Large Magellanic Cloud L/Teff Has an unusually high metallicity and velocity. Often referred to as its SIMBAD designation B90.
Discrepancy in radius is caused by a potential underestimation of the effective temperature measured from the Titanium(II) oxide bands.
HV 2450 1,000+2
−1–1,071
Large Magellanic Cloud L/Teff A yellow hypergiant.
LMC 149767 994 Large Magellanic Cloud L/Teff
UCAC2 2674864 (HV 2834) 990+115
−100
Large Magellanic Cloud L/Teff
HV 996 988–1,176 Large Magellanic Cloud
W61 8–88 986 Large Magellanic Cloud L/Teff
HV 2362 982 – 1,030 Large Magellanic Cloud L/Teff
MG73 59 979 Large Magellanic Cloud L/Teff A yellow supergiant.
HD 268757 979 Large Magellanic Cloud L/Teff A G8 yellow hypergiant.
SMC 56389 976 Small Magellanic Cloud L/Teff
LMC 136404 974 Large Magellanic Cloud L/Teff
SP77 46-32 973–1,133 Large Magellanic Cloud
HV 2084 967–1,083 Small Magellanic Cloud
WOH S74 965–1,014 Large Magellanic Cloud L/Teff
SMC 10889 963 Small Magellanic Cloud L/Teff
TRM 67 951 Large Magellanic Cloud L/Teff
LHA 120-S 26 951 Large Magellanic Cloud L/Teff
LMC 139413 951 Large Magellanic Cloud L/Teff
TRM 87 947 Large Magellanic Cloud L/Teff
LMC 148035 947 Large Magellanic Cloud L/Teff
HV 12802 946–1,377 Large Magellanic Cloud
SMC 018136 945 Small Magellanic Cloud L/Teff
LMC 142202 943 Large Magellanic Cloud L/Teff
LMC 147199 939 – 990 Large Magellanic Cloud L/Teff
SP77 37-24 936 Large Magellanic Cloud L/Teff
LMC 148381 932 Large Magellanic Cloud L/Teff
LMC 23095 926 – 1,280 Large Magellanic Cloud L/Teff
SP77 31-16 923±28 Large Magellanic Cloud L/Teff A yellow hypergiant.
LMC 170452 920 Large Magellanic Cloud L/Teff
SP77 44-5 918 Large Magellanic Cloud L/Teff
LMC 66778 915 – 990 Large Magellanic Cloud L/Teff
NGC371 R20 913 Small Magellanic Cloud L/Teff
LMC 150040 911 Large Magellanic Cloud L/Teff
HV 2236 911–971 Large Magellanic Cloud L/Teff
TRM 108 906 Large Magellanic Cloud L/Teff
LMC 169142 902 Large Magellanic Cloud L/Teff
WOH S457 902±45 Large Magellanic Cloud L/Teff
IRAS 04498-6842 (LI-LMC 60) 898 – 1,137 – 1,765, 1,224 Large Magellanic Cloud L/Teff Lower value derived from fitting models that assume the star's effective temperature to be 3,400 K. Higher value based on the measured effective temperature from van Loon et al. (2005). A newer paper estimates parameters that would result in a radius of 1,765 R.
LMC 135720 898 Large Magellanic Cloud L/Teff
SMC 81961 892 Small Magellanic Cloud L/Teff
SP77 44-19 891–1,297 Large Magellanic Cloud L/Teff
SP77 45–49 890 Large Magellanic Cloud L/Teff
LMC 175464 892–982 Large Magellanic Cloud
SMC 49478 888 Small Magellanic Cloud L/Teff
HV 12185 890+55
−65
Large Magellanic Cloud L/Teff
SP77 45–53 885–981 Large Magellanic Cloud
LMC 170079 882 Large Magellanic Cloud L/Teff
SMC 5092 880 Small Magellanic Cloud L/Teff
HV 12793 880+45
−65
Large Magellanic Cloud L/Teff
W61 21–22 877 Large Magellanic Cloud L/Teff
SP77 35-1 877 Large Magellanic Cloud L/Teff
UCAC3 43-23216 873 Large Magellanic Cloud L/Teff
HV 11423 872 Small Magellanic Cloud L/Teff
WOH S57 875+70
−60
Large Magellanic Cloud L/Teff
SP77 53-3 870 Large Magellanic Cloud L/Teff
SP77 36-14 870 Large Magellanic Cloud L/Teff
SP77 31-19 870 Large Magellanic Cloud L/Teff
LMC 158646 865 Large Magellanic Cloud L/Teff
SP77 31-20 864 Large Magellanic Cloud L/Teff
LMC 113364 864 Large Magellanic Cloud L/Teff
SMC 83202 864 Small Magellanic Cloud L/Teff
LMC 175746 863 Large Magellanic Cloud L/Teff
LMC207 863 Large Magellanic Cloud L/Teff
SP77 29-8 858 Large Magellanic Cloud L/Teff
SP77 54-38 859–911 Large Magellanic Cloud
LMC 174714 855–965 Large Magellanic Cloud
LMC 176135 854 Large Magellanic Cloud L/Teff
LMC178 845 Large Magellanic Cloud L/Teff
SP77 31-26 845 Large Magellanic Cloud L/Teff
LMC 106201 844 Large Magellanic Cloud L/Teff
SP77 48-13 838 Large Magellanic Cloud L/Teff
MSX LMC 1318 837 Large Magellanic Cloud L/Teff
SP77 28-13 835 Large Magellanic Cloud L/Teff
LMC 143898 833 Large Magellanic Cloud L/Teff
TYC 9161-866-1 833 Large Magellanic Cloud L/Teff
SMC 59803 829 Small Magellanic Cloud L/Teff
LMC 157401 828 Large Magellanic Cloud L/Teff
SP77 39-22 828 Large Magellanic Cloud L/Teff
WOH S52 828 Large Magellanic Cloud L/Teff
SP77 30-22 826 Large Magellanic Cloud L/Teff
LMC 145728 826 Large Magellanic Cloud L/Teff
LMC 169049 825 Large Magellanic Cloud L/Teff
SP77 46-34 825 Large Magellanic Cloud L/Teff
LMC 177997 825–867 Large Magellanic Cloud
SP77 28-2 825±60 Large Magellanic Cloud L/Teff
SP77 22-9 823 – 850 Large Magellanic Cloud L/Teff
Z Doradus 824±108–956 Large Magellanic Cloud L/Teff
WOH S421 822–840 Large Magellanic Cloud
LMC 72727 822 Large Magellanic Cloud L/Teff
SP77 37-28 821 Large Magellanic Cloud L/Teff
MSX LMC 575 816–933 Large Magellanic Cloud
LMC 143035 815 Large Magellanic Cloud L/Teff
WOH S49 815 Large Magellanic Cloud L/Teff
SP77 52-28 812 Large Magellanic Cloud L/Teff
SHV 0520422-693821 808 Large Magellanic Cloud L/Teff
HD 268850 808–898 Large Magellanic Cloud
SMC 20133 809–835 Small Magellanic Cloud
SMC 25888 804 Small Magellanic Cloud L/Teff
SP77 55-20 803 Large Magellanic Cloud L/Teff
WOH G64 ~800 Large Magellanic Cloud L/Teff Surrounded by a large torus-shaped dust envelope. Transitioned from a red supergiant into a yellow hypergiant after a potential 30 year long outburst. Previously estimated to be 1,540 ± 77 R
PGMW 1058 800 Large Magellanic Cloud L/Teff
LMC 145112 798 Large Magellanic Cloud L/Teff
SMC 47757 795 Small Magellanic Cloud L/Teff
LMC 175709 794 Large Magellanic Cloud L/Teff
SMC 46497 794 Small Magellanic Cloud L/Teff
WOH S60 789 Large Magellanic Cloud L/Teff
WOH S102 789 Large Magellanic Cloud L/Teff
LMC 164709 787 Large Magellanic Cloud L/Teff
SP77 31-28 787 Large Magellanic Cloud L/Teff
TRM 73 787–816 Large Magellanic Cloud
SP77 31-21 784 Large Magellanic Cloud L/Teff
SMC 8930 784 Small Magellanic Cloud L/Teff
PMMR 62 784 Small Magellanic Cloud L/Teff
SP77 46-31 782 Large Magellanic Cloud L/Teff
LMC211 780 Large Magellanic Cloud L/Teff
LMC 140403 778 Large Magellanic Cloud L/Teff
LMC 134383 778–803 Large Magellanic Cloud L/Teff
SP77 47-11 778 Large Magellanic Cloud L/Teff
SP77 40-7 778 – 810 Large Magellanic Cloud L/Teff
W61 19–24 780+50
−70
Large Magellanic Cloud L/Teff
WOH S28 780 Large Magellanic Cloud L/Teff
LMC 141568 776 Large Magellanic Cloud L/Teff
SP77 51-2 776 Large Magellanic Cloud L/Teff
SP77 31–43 773 Large Magellanic Cloud L/Teff
MSX LMC 833 773–849 Large Magellanic Cloud
SP77 52-32 772 Large Magellanic Cloud L/Teff
SP77 22-10 767 Large Magellanic Cloud L/Teff
SP77 48-6 768 Large Magellanic Cloud L/Teff
SMC 12322 765 Small Magellanic Cloud L/Teff
WOH S517 764 Large Magellanic Cloud L/Teff
WOH S183 763 Large Magellanic Cloud L/Teff
LMC256 762 Large Magellanic Cloud L/Teff
LMC 154311 762 Large Magellanic Cloud L/Teff
LMC 119219 762 Large Magellanic Cloud L/Teff
WOH S452 762±275 Large Magellanic Cloud L/Teff
MSX SMC 024 761 Large Magellanic Cloud L/Teff
WOH S282 758 Large Magellanic Cloud L/Teff
LMC 64048 758 Large Magellanic Cloud L/Teff
PGMW 3160 758 Large Magellanic Cloud L/Teff
WOH S438 757±211 Large Magellanic Cloud L/Teff
LMC 61753 755 Large Magellanic Cloud L/Teff
LMC 140296 754 Large Magellanic Cloud L/Teff
WOH S478 753 Large Magellanic Cloud L/Teff
LMC 139027 751 – 790 Large Magellanic Cloud L/Teff
SP77 45-16 749 – 800 Large Magellanic Cloud L/Teff
SP77 37-20 749 Large Magellanic Cloud L/Teff
SP77 54-27 750 – 758 – 800 Large Magellanic Cloud L/Teff
LMC 155529 747 Large Magellanic Cloud L/Teff
LMC 143877 746 Large Magellanic Cloud L/Teff
SMC 64663 745 Small Magellanic Cloud L/Teff
WOH G302 745 Large Magellanic Cloud L/Teff
TRM 65 743 Large Magellanic Cloud L/Teff
HV 12149 741–767 Small Magellanic Cloud
SMC 50840 740 Small Magellanic Cloud L/Teff
SMC 46662 740–874 Small Magellanic Cloud
SP77 29-11 738 Large Magellanic Cloud L/Teff
SMC 30616 737 Small Magellanic Cloud L/Teff
LMC 162635 736 Large Magellanic Cloud L/Teff
SP77 39-17 736 – 760 Large Magellanic Cloud L/Teff
LMC 163466 734 Large Magellanic Cloud L/Teff
HV 2310 734 Large Magellanic Cloud L/Teff
HD 269723 734±17, 814–829 Large Magellanic Cloud L/Teff A yellow hypergiant.
SP77 44-17 732 Large Magellanic Cloud L/Teff
SP77 38-5a 732 Large Magellanic Cloud L/Teff
LMC 67982 730 Large Magellanic Cloud L/Teff
LHA 120-S 129 730 Large Magellanic Cloud L/Teff
PMMR 64 730+75
−65
Small Magellanic Cloud L/Teff
SP77 51-15 727 Large Magellanic Cloud L/Teff
LMC 168757 725 Large Magellanic Cloud L/Teff
LMC 163007 725 Large Magellanic Cloud L/Teff
W61 8–14 724 Large Magellanic Cloud L/Teff
IRAS 05425-6914 724 Large Magellanic Cloud L/Teff
SMC 55188 724 Small Magellanic Cloud L/Teff
SP77 44-13 721 Large Magellanic Cloud L/Teff
MSX LMC 905 719 Large Magellanic Cloud L/Teff
LMC 147928 719 Large Magellanic Cloud L/Teff
LH 43-15 719 – 740 Large Magellanic Cloud L/Teff
PMMR 116 717 Small Magellanic Cloud L/Teff
LMC 123778 715 Large Magellanic Cloud L/Teff
WOH S314 714 Large Magellanic Cloud L/Teff
SP77 61-23 713 Large Magellanic Cloud L/Teff
WOH S230 713 Large Magellanic Cloud L/Teff
LMC 150396 710 Large Magellanic Cloud L/Teff
SP77 48-17 709 Large Magellanic Cloud L/Teff
LMC 165242 707 Large Magellanic Cloud L/Teff
SP77 51-19 707 Large Magellanic Cloud L/Teff
LMC 170539 707 Large Magellanic Cloud L/Teff
LMC 154729 705 Large Magellanic Cloud L/Teff
OGLE BRIGHT-LMC-LPV-101 703 Large Magellanic Cloud L/Teff
MSX SMC 055 702–1,557+215
−130
Small Magellanic Cloud L/Teff A super-AGB candidate.
LMC 168290 702 Large Magellanic Cloud L/Teff
LMC180 702 Large Magellanic Cloud L/Teff
SP77 45-2 702 Large Magellanic Cloud L/Teff
SP77 48-6 700+29
−28
Large Magellanic Cloud L/Teff A yellow hypergiant.
The following well-known stars are listed for the purpose of comparison.
HV 2112 675 – 1,193 Small Magellanic Cloud L/Teff It has been previously considered to be a possible Thorne–Żytkow object.
HV 11417 673–798 Small Magellanic Cloud L/Teff Candidate Thorne-Zytkow object.
HD 269953 647–720 Large Magellanic Cloud L/Teff A yellow hypergiant.
HD 271182 621 Large Magellanic Cloud L/Teff A yellow hypergiant.
HD 33579 471 Large Magellanic Cloud L/Teff The brightest star in the Large Magellanic Cloud.
S Doradus 100 Large Magellanic Cloud L/Teff A luminous blue variable in the S Doradus instability strip.
HD 37974 99 Large Magellanic Cloud L/Teff An unusual blue hypergiant with a large dusty disk.
R136a1 42.7+1.6
−0.9
Large Magellanic Cloud L/Teff One of the most luminous and most massive stars.
BAT 99-98 37.5 Large Magellanic Cloud L/Teff One of the most luminous and most massive stars.
HD 5980 A 24 Small Magellanic Cloud L/Teff A luminous blue variable and one of the most luminous stars.

Andromeda (M31) and Triangulum (M33) galaxies

List of the largest known stars in Andromeda and Triangulum galaxies
Star name Solar radii
(Sun = 1)
Galaxy Method Notes
Theoretical limit of star size (M31) ≳1,750 Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of supernova progenitor candidates. Assumes an effective temperature of 3625 K.
Reported for reference
LGGS J013339.28+303118.8 1,566 Triangulum Galaxy L/Teff
Theoretical limit of star size (M33) ≳1,500 Estimated by measuring the fraction of red supergiants at higher luminosities in a large sample of supernova progenitor candidates. Assumes an effective temperature of 3605 K.
Reported for reference
LGGS J004428.48+415130.9 1,410 Andromeda Galaxy L/Teff
LGGS J013418.56+303808.6 1,363 Triangulum Galaxy L/Teff
LGGS J013414.27+303417.7 1,342–1,479 Triangulum Galaxy L/Teff
LGGS J004514.91+413735.0 1,324 Andromeda Galaxy L/Teff
LGGS J004125.23+411208.9 1,302 Andromeda Galaxy L/Teff
LGGS J013350.62+303230.3 1,283 Triangulum Galaxy L/Teff
LGGS J004312.43+413747.1 1,279 Andromeda Galaxy L/Teff
LGGS J003951.33+405303.7 1,272 Andromeda Galaxy L/Teff
LGGS J013416.52+305155.4 1,227 Triangulum Galaxy L/Teff
LGGS J004416.83+411933.2 1,209 Andromeda Galaxy L/Teff
LGGS J004531.13+414825.7 1,201 Andromeda Galaxy L/Teff
2MASS J01343365+3046547 1,196 Triangulum Galaxy L/Teff
LGGS J013409.63+303907.6 1,182 Triangulum Galaxy L/Teff
LGGS J004133.18+411217.2 1,180 Andromeda Galaxy L/Teff
LGGS J004455.90+413035.2 1,172 Andromeda Galaxy L/Teff
LGGS J013352.96+303816.0 1,163 Andromeda Galaxy L/Teff
LGGS J004047.22+404445.5 1,162 Andromeda Galaxy L/Teff
LGGS J004254.18+414033.6 1,154 Andromeda Galaxy L/Teff
LGGS J004428.48+415130.9 1,130 Andromeda Galaxy L/Teff
LGGS J013414.27+303417.7 1,129 Triangulum Galaxy L/Teff
LGGS J004035.08+404522.3 1,122 Andromeda Galaxy L/Teff
LGGS J013341.98+302102.0 1,119 Triangulum Galaxy L/Teff
LGGS J013307.37+304543.2 1,119 Triangulum Galaxy L/Teff
LGGS J004218.33+412633.9 1,111 Andromeda Galaxy L/Teff
LGGS J004102.54+403426.5 1,108 Andromeda Galaxy L/Teff
LGGS J013335.90+303344.5 1,104 Triangulum Galaxy L/Teff
LGGS J013358.54+303419.9 1,103 Triangulum Galaxy L/Teff
LGGS J013414.49+303511.6 1,102 Triangulum Galaxy L/Teff
LGGS J013336.64+303532.3 1,102–1,408 Triangulum Galaxy L/Teff
LGGS J004259.34+413726.0 1,094 Andromeda Galaxy L/Teff
LGGS J004509.98+414627.5 1,089 Andromeda Galaxy L/Teff
LGGS J013241.94+302047.5 1,083 Triangulum Galaxy L/Teff
LGGS J004034.74+404459.6 1,078 Andromeda Galaxy L/Teff
LGGS J004059.50+404542.6 1,071 Andromeda Galaxy L/Teff
LGGS J013430.75+303218.8 1,067 Triangulum Galaxy L/Teff
LGGS J013412.27+305314.1 1,063–1,066 Triangulum Galaxy L/Teff
LGGS J013328.17+304741.5 1,063 Triangulum Galaxy L/Teff
LGGS J004524.97+420727.2 1,059 Andromeda Galaxy L/Teff
LGGS J013233.77+302718.8 1,058–1,129 Triangulum Galaxy L/Teff
LGGS J004125.72+411212.7 1,058 Andromeda Galaxy L/Teff
LGGS J004114.18+403759.8 1,058 Andromeda Galaxy L/Teff
LGGS J013307.60+304259.0 1,051 Triangulum Galaxy L/Teff
LGGS J004103.67+410211.8 1,047 Andromeda Galaxy L/Teff
LGGS J013305.48+303138.5 1,046 Triangulum Galaxy L/Teff
LGGS J004442.41+412649.5 1,040 Andromeda Galaxy L/Teff
LGGS J013403.87+303753.2 1,040 Triangulum Galaxy L/Teff
LGGS J013351.47+303640.3 1,034 Triangulum Galaxy L/Teff
LGGS J004306.62+413806.2 1,028 Andromeda Galaxy L/Teff
LGGS J013303.54+303201.2 1,027–1,131 Triangulum Galaxy L/Teff
LGGS J004234.41+405855.9 1,023 Andromeda Galaxy L/Teff
LGGS J004051.31+404421.7 1,022 Andromeda Galaxy L/Teff
LGGS J004031.00+404311.1 1,011 Andromeda Galaxy L/Teff
LGGS J013406.20+303913.6 1,009 Triangulum Galaxy L/Teff
LGGS J013344.10+304425.1 1,007 Triangulum Galaxy L/Teff
LGGS J004307.36+405852.2 1,007 Andromeda Galaxy L/Teff
LGGS J013407.13+303929.5 994 Triangulum Galaxy L/Teff
LGGS J013312.35+303033.9 993 Triangulum Galaxy L/Teff
LGGS J013330.05+303145.9 988 Triangulum Galaxy L/Teff
LGGS J013350.84+304403.1 984 Triangulum Galaxy L/Teff
LGGS J013329.47+301848.3 981 Triangulum Galaxy L/Teff
LGGS J004148.74+410843.0 981 Andromeda Galaxy L/Teff
LGGS J004415.76+411750.7 977 Andromeda Galaxy L/Teff
LGGS J004127.44+411240.7 977 Andromeda Galaxy L/Teff
LGGS J013312.75+303946.1 975 Triangulum Galaxy L/Teff
LGGS J004027.36+410444.9 973 Andromeda Galaxy L/Teff
LGGS J013434.35+302627.3 973 Triangulum Galaxy L/Teff
LGGS J013423.29+305655.0 993–972 Triangulum Galaxy L/Teff
LGGS J013319.13+303642.5 970 Triangulum Galaxy L/Teff
LGGS J004305.77+410742.5 969 Andromeda Galaxy L/Teff
LGGS J013403.73+304202.4 965–1,032 Triangulum Galaxy L/Teff
LGGS J004346.10+411138.8 962 Andromeda Galaxy L/Teff
LGGS J004419.20+412343.7 959 Andromeda Galaxy L/Teff
LGGS J013353.91+302641.8 959–1,008 Triangulum Galaxy L/Teff
LGGS J013315.23+305329.0 958 Triangulum Galaxy L/Teff
LGGS J013315.23+305329.0 956 Triangulum Galaxy L/Teff
LGGS J004138.35+412320.7 954 Andromeda Galaxy L/Teff
LGGS J004419.45+411749.5 950 Andromeda Galaxy L/Teff
LGGS J013413.95+303339.6 948 Triangulum Galaxy L/Teff
LGGS J013336.42+303530.9 947 Triangulum Galaxy L/Teff
LGGS J004047.82+410936.4 943 Andromeda Galaxy L/Teff
LGGS J013258.18+303606.3 943 Triangulum Galaxy L/Teff
LGGS J004447.74+413050.0 938 Andromeda Galaxy L/Teff
2MASS J01343131+3046088 938 Triangulum Galaxy L/Teff
LGGS J004346.18+411515.0 936 Andromeda Galaxy L/Teff
LGGS J004304.62+410348.4 936 Andromeda Galaxy L/Teff
LGGS J004458.28+413154.3 933 Andromeda Galaxy L/Teff
LGGS J004102.82+410422.3 933 Andromeda Galaxy L/Teff
LGGS J013344.33+303636.0 932 Triangulum Galaxy L/Teff
LGGS J004631.49+421133.1 932 Andromeda Galaxy L/Teff
LGGS J013321.44+304045.4 932–1,015 Triangulum Galaxy L/Teff
LGGS J013358.04+304900.1 931 Triangulum Galaxy L/Teff
LGGS J013314.31+302952.9 1,067–930 Triangulum Galaxy L/Teff
LGGS J013315.97+303153.7 929 Triangulum Galaxy L/Teff
LGGS J004126.14+403346.5 927 Andromeda Galaxy L/Teff
LGGS J004347.31+411203.6 925 Andromeda Galaxy L/Teff
LGGS J004252.78+405627.5 923 Andromeda Galaxy L/Teff
LGGS J013411.54+303312.6 918 Triangulum Galaxy L/Teff
LGGS J013357.08+303817.8 918 Triangulum Galaxy L/Teff
LGGS J003943.89+402104.6 917 Andromeda Galaxy L/Teff
LGGS J004503.35+413026.3 916 Andromeda Galaxy L/Teff
LGGS J013338.97+303828.9 915 Triangulum Galaxy L/Teff
LGGS J013330.27+303510.6 915 Triangulum Galaxy L/Teff
LGGS J004033.06+404303.1 912 Andromeda Galaxy L/Teff
LGGS J004357.15+411136.6 911 Andromeda Galaxy L/Teff
LGGS J004406.60+411536.6 911 Andromeda Galaxy L/Teff
LGGS J013312.38+302453.2 911–952 Triangulum Galaxy L/Teff
LGGS J004451.76+420006.0 911 Andromeda Galaxy L/Teff
LGGS J013322.82+301910.9 934–911 Triangulum Galaxy L/Teff
LGGS J013355.56+304120.9 908 Triangulum Galaxy L/Teff
LGGS J004034.40+403627.4 907 Andromeda Galaxy L/Teff
LGGS J003910.56+402545.6 906 Andromeda Galaxy L/Teff
LGGS J004142.43+411814.1 906 Andromeda Galaxy L/Teff
LGGS J013316.57+303051.9 902 Triangulum Galaxy L/Teff
LGGS J013245.59+303518.7 900 Triangulum Galaxy L/Teff
LGGS J004034.67+404322.5 898 Andromeda Galaxy L/Teff
LGGS J004027.65+405126.7 898 Andromeda Galaxy L/Teff
LGGS J004322.75+411101.8 895 Andromeda Galaxy L/Teff
LGGS J004116.47+410813.7 895 Andromeda Galaxy L/Teff
LGGS J013306.33+303208.2 894 Triangulum Galaxy L/Teff
LGGS J004039.12+404252.3 894 Andromeda Galaxy L/Teff
LGGS J004433.96+415414.8 893 Andromeda Galaxy L/Teff
LGGS J013454.31+304109.8 891 Triangulum Galaxy L/Teff
LGGS J004030.64+404246.2 890 Andromeda Galaxy L/Teff
LGGS J004252.67+413615.2 889 Andromeda Galaxy L/Teff
LGGS J013349.94+302928.8 888 Triangulum Galaxy L/Teff
2MASS J01335010+3039106 886 Triangulum Galaxy L/Teff
LGGS J013357.37+304558.7 886 Triangulum Galaxy L/Teff
LGGS J013338.77+303532.9 885 Triangulum Galaxy L/Teff
LGGS J013359.20+303212.1 884 Triangulum Galaxy L/Teff
LGGS J013340.42+303131.3 880 Triangulum Galaxy L/Teff
LGGS J004511.40+413717.8 880 Andromeda Galaxy L/Teff
LGGS J013352.16+303902.2 880 Triangulum Galaxy L/Teff
LGGS J004219.25+405116.4 880 Andromeda Galaxy L/Teff
LGGS J004331.90+411145.0 880 Andromeda Galaxy L/Teff
2MASS J01333718+3038206 879 Triangulum Galaxy L/Teff
LGGS J013415.42+302816.4 876 Triangulum Galaxy L/Teff
LGGS J013345.01+302105.1 876 Triangulum Galaxy L/Teff
LGGS J004107.23+411636.8 870 Andromeda Galaxy L/Teff
LGGS J013417.83+303356.0 867 Triangulum Galaxy L/Teff
LGGS J004120.25+403838.1 867 Andromeda Galaxy L/Teff
LGGS J004402.38+412114.9 866 Andromeda Galaxy L/Teff
2MASS J01334194+3038565 866 Triangulum Galaxy L/Teff
LGGS J013309.10+303017.8 865–933 Triangulum Galaxy L/Teff
LGGS J004429.36+412307.8 862 Andromeda Galaxy L/Teff
LGGS J013310.20+303314.4 861 Triangulum Galaxy L/Teff
LGGS J004404.60+412729.8 860 Andromeda Galaxy L/Teff
LGGS J003907.69+402859.5 860 Andromeda Galaxy L/Teff
LGGS J004219.64+412736.1 859 Andromeda Galaxy L/Teff
LGGS J003949.31+402049.1 859 Andromeda Galaxy L/Teff
LGGS J013310.16+302726.3 855 Triangulum Galaxy L/Teff
LGGS J004036.97+403412.4 855 Andromeda Galaxy L/Teff
LGGS J013343.68+304450.7 855 Triangulum Galaxy L/Teff
LGGS J013409.10+303351.8 854 Triangulum Galaxy L/Teff
LGGS J013407.11+303918.7 854 Triangulum Galaxy L/Teff
LGGS J004107.11+411635.6 854 Andromeda Galaxy L/Teff
LGGS J013400.01+304622.2 852 Triangulum Galaxy L/Teff
LGGS J013327.14+303917.4 851 Andromeda Galaxy L/Teff
LGGS J013339.79+304032.2 850 Triangulum Galaxy L/Teff
LGGS J004501.30+413922.5 850 Andromeda Galaxy L/Teff
LGGS J004450.87+412924.3 850 Andromeda Galaxy L/Teff
LGGS J004040.69+405908.1 850 Andromeda Galaxy L/Teff
LGGS J003942.92+402051.1 850 Andromeda Galaxy L/Teff
2MASS J01335092+3040481 850 Triangulum Galaxy L/Teff
LGGS J013315.19+305319.8 847 Triangulum Galaxy L/Teff
LGGS J013416.89+305158.3 845–920 Triangulum Galaxy L/Teff
LGGS J004415.17+415640.6 845 Andromeda Galaxy L/Teff
LGGS J004424.94+412322.3 844 Andromeda Galaxy L/Teff
LGGS J013331.93+301952.9 838 Triangulum Galaxy L/Teff
LGGS J004406.16+414846.4 836 Andromeda Galaxy L/Teff
LGGS J013445.65+303235.4 835 Triangulum Galaxy L/Teff
LGGS J004109.39+404901.9 834 Andromeda Galaxy L/Teff
LGGS J004423.83+414928.6 833 Andromeda Galaxy L/Teff
LGGS J013242.31+302113.9 833 Triangulum Galaxy L/Teff
LGGS J004030.48+404051.1 833 Andromeda Galaxy L/Teff
LGGS J004118.29+404940.3 832 Andromeda Galaxy L/Teff
LGGS J013414.17+304701.9 831 Triangulum Galaxy L/Teff
LGGS J013328.89+303058.0 831 Triangulum Galaxy L/Teff
LGGS J004107.70+403702.3 831 Andromeda Galaxy L/Teff
LGGS J003925.67+404111.8 831 Andromeda Galaxy L/Teff
LGGS J004306.95+410038.2 826 Andromeda Galaxy L/Teff
LGGS J013408.81+304637.8 826 Triangulum Galaxy L/Teff
LGGS J013345.22+303138.2 826 Triangulum Galaxy L/Teff
LGGS J003950.65+402531.8 825 Andromeda Galaxy L/Teff
LGGS J013427.65+305642.4 825 Triangulum Galaxy L/Teff
LGGS J013500.04+303703.8 823 Triangulum Galaxy L/Teff
LGGS J004108.42+410655.3 822 Andromeda Galaxy L/Teff
LGGS J013340.77+302108.7 821–820 Triangulum Galaxy L/Teff
LGGS J004458.57+412925.1 821 Andromeda Galaxy L/Teff
LGGS J013309.97+302727.5 973 Triangulum Galaxy L/Teff
LGGS J004124.81+411206.1 819 Andromeda Galaxy L/Teff
LGGS J013401.65+303128.7 819 Triangulum Galaxy L/Teff
LGGS J013455.65+304349.0 816 Triangulum Galaxy L/Teff
LGGS J013310.60+302301.8 816 Triangulum Galaxy L/Teff
LGGS J004544.71+414331.9 815 Andromeda Galaxy L/Teff
LGGS J004119.35+410836.4 813 Andromeda Galaxy L/Teff
LGGS J013436.65+304517.1 814–812 Triangulum Galaxy L/Teff
LGGS J013301.79+303954.3 812 Triangulum Galaxy L/Teff
LGGS J013328.85+310041.7 810–909 Triangulum Galaxy L/Teff
LGGS J013401.08+303432.2 809 Triangulum Galaxy L/Teff
LGGS J004036.45+403613.1 808 Andromeda Galaxy L/Teff
LGGS J004521.53+413758.6 807 Andromeda Galaxy L/Teff
LGGS J004432.38+415149.9 807 Andromeda Galaxy L/Teff
LGGS J013306.95+303506.1 807 Triangulum Galaxy L/Teff Contradictory classification in literature, it has been considered a candidate LBV, a RSG or a BSG.
LGGS J013242.26+302114.1 807 Triangulum Galaxy L/Teff
LGGS J013321.94+304112.0 806–829 Triangulum Galaxy L/Teff
LGGS J013304.56+303043.2 804 Triangulum Galaxy L/Teff
LGGS J004331.73+414223.0 803 Andromeda Galaxy L/Teff
LGGS J004044.17+410729.0 803 Andromeda Galaxy L/Teff
LGGS J013352.83+305605.2 803 Triangulum Galaxy L/Teff
LGGS J013343.30+303318.9 873–803 Triangulum Galaxy L/Teff
LGGS J013342.61+303534.7 800 Triangulum Galaxy L/Teff
LGGS J013326.90+310054.2 800–909 Triangulum Galaxy L/Teff
LGGS J013300.94+303404.3 798 Triangulum Galaxy L/Teff
LGGS J013416.06+303730.0 798 Triangulum Galaxy L/Teff
LGGS J004503.83+413737.0 797 Andromeda Galaxy L/Teff
LGGS J004503.83+413737.0 797 Andromeda Galaxy L/Teff
LGGS J004438.83+415253.0 794 Andromeda Galaxy L/Teff
LGGS J004235.88+405442.2 794 Andromeda Galaxy L/Teff
LGGS J004335.28+410959.7 794 Andromeda Galaxy L/Teff
LGGS J013402.32+303828.4 793 Triangulum Galaxy L/Teff
LGGS J004125.55+405034.8 792 Andromeda Galaxy L/Teff
LGGS J013507.43+304132.6 791 Triangulum Galaxy L/Teff
LGGS J013353.25+303918.7 791 Triangulum Galaxy L/Teff
LGGS J004308.71+410604.5 790 Andromeda Galaxy L/Teff
LGGS J013417.17+304826.6 789 Triangulum Galaxy L/Teff
LGGS J013310.71+302714.9 789–884 Triangulum Galaxy L/Teff
LGGS J013432.36+304159.0 788 Triangulum Galaxy L/Teff
LGGS J004356.23+414641.8 788 Andromeda Galaxy L/Teff
LGGS J013340.77+302108.7 788 Triangulum Galaxy L/Teff
LGGS J013346.61+304125.4 786 Triangulum Galaxy L/Teff
LGGS J004447.08+412801.7 785 Andromeda Galaxy L/Teff
LGGS J004255.95+404857.5 785 Andromeda Galaxy L/Teff
LGGS J013231.91+302329.1 783 Triangulum Galaxy L/Teff
LGGS J004110.32+410433.4 782 Andromeda Galaxy L/Teff
LGGS J004159.06+405718.7 780 Andromeda Galaxy L/Teff
LGGS J004241.10+413142.3 775 Andromeda Galaxy L/Teff
LGGS J013401.88+303858.3 776 Triangulum Galaxy L/Teff
LGGS J013445.12+305858.9 773 Triangulum Galaxy L/Teff
LGGS J004030.92+404329.3 773 Andromeda Galaxy L/Teff
LGGS J013359.57+303413.5 771 Triangulum Galaxy L/Teff
LGGS J004353.97+411255.6 771 Andromeda Galaxy L/Teff
LGGS J004029.03+403412.6 770 Andromeda Galaxy L/Teff
LGGS J004526.24+420047.5 767 Andromeda Galaxy L/Teff
LGGS J013348.44+302029.8 767 Triangulum Galaxy L/Teff
LGGS J004552.15+421003.5 767 Andromeda Galaxy L/Teff
LGGS J013320.75+303204.8 764 Triangulum Galaxy L/Teff
LGGS J013416.28+303353.5 763–801 Triangulum Galaxy L/Teff
LGGS J013357.91+303338.9 763 Triangulum Galaxy L/Teff
LGGS J013253.14+303515.3 762 Triangulum Galaxy L/Teff
LGGS J004051.18+403053.4 762 Andromeda Galaxy L/Teff
LGGS J013402.57+303746.3 762 Triangulum Galaxy L/Teff
LGGS J013352.15+304006.4 762 Triangulum Galaxy L/Teff
LGGS J004427.07+415203.0 762 Andromeda Galaxy L/Teff
LGGS J004233.23+405917.0 762 Andromeda Galaxy L/Teff
LGGS J004156.96+405720.8 761 Andromeda Galaxy L/Teff
LGGS J004117.14+410843.7 761 Andromeda Galaxy L/Teff
LGGS J004124.80+411634.7 760, 1,205, 1,240 Andromeda Galaxy L/Teff
LGGS J004109.61+404920.4 761 Andromeda Galaxy L/Teff
LGGS J003930.09+402313.0 759 Andromeda Galaxy L/Teff
LGGS J013324.71+303423.7 758 Triangulum Galaxy L/Teff
LGGS J013317.40+303210.8 758 Triangulum Galaxy L/Teff
LGGS J013411.83+304631.0 756 Triangulum Galaxy L/Teff
LGGS J004417.75+420039.1 755 Andromeda Galaxy L/Teff
LGGS J004454.50+413007.8 755 Andromeda Galaxy L/Teff
LGGS J013348.77+304526.8 754 Triangulum Galaxy L/Teff
LGGS J004019.69+404912.2 754 Andromeda Galaxy L/Teff
LGGS J004340.32+411157.1 753 Andromeda Galaxy L/Teff
LGGS J013304.02+303215.2 753 Triangulum Galaxy L/Teff
LGGS J013409.16+303846.9 752 Triangulum Galaxy L/Teff
LGGS J013459.81+304156.9 751–765 Triangulum Galaxy L/Teff
LGGS J013334.82+302029.1 751–930 Triangulum Galaxy L/Teff
LGGS J013400.71+303422.3 750 Triangulum Galaxy L/Teff
LGGS J004224.65+412623.7 749 Andromeda Galaxy L/Teff
LGGS J013414.88+303401.2 749 Triangulum Galaxy L/Teff
LGGS J004343.33+414529.5 749 Andromeda Galaxy L/Teff
LGGS J004034.76+403648.9 749 Andromeda Galaxy L/Teff
LGGS J013353.53+303418.7 749 Triangulum Galaxy L/Teff
LGGS J004501.84+420259.2 747 Andromeda Galaxy L/Teff
LGGS J013409.70+303916.2 744 Triangulum Galaxy L/Teff
LGGS J013345.71+303609.8 744 Triangulum Galaxy L/Teff
LGGS J004342.75+411442.8 743 Andromeda Galaxy L/Teff
LGGS J013333.32+303147.2 741 Triangulum Galaxy L/Teff
LGGS J013338.97+303506.1 741 Triangulum Galaxy L/Teff
LGGS J013303.61+302841.5 741 Triangulum Galaxy L/Teff
LGGS J004201.12+412516.0 737 Andromeda Galaxy L/Teff
LGGS J004341.35+411213.8 734 Andromeda Galaxy L/Teff
LGGS J013438.76+304608.1 734 Triangulum Galaxy L/Teff
LGGS J013402.33+301749.2 734–786 Triangulum Galaxy L/Teff
2MASS J01334180+3040207 732 Triangulum Galaxy L/Teff
LGGS J013354.32+301724.6 732–854 Triangulum Galaxy L/Teff
LGGS J013334.23+303400.3 732 Triangulum Galaxy L/Teff
LGGS J013357.60+304113.3 730 Triangulum Galaxy L/Teff
LGGS J004614.57+421117.4 730 Andromeda Galaxy L/Teff
LGGS J004120.96+404125.3 730 Andromeda Galaxy L/Teff
LGGS J004228.46+405519.0 728 Andromeda Galaxy L/Teff
LGGS J004024.52+404444.8 728 Andromeda Galaxy L/Teff
LGGS J013349.75+304459.8 727 Triangulum Galaxy L/Teff
LGGS J013306.88+303004.6 727 Triangulum Galaxy L/Teff
LGGS J004358.00+412114.1 727 Andromeda Galaxy L/Teff
LGGS J004147.27+411537.8 727 Andromeda Galaxy L/Teff
LGGS J013407.23+304158.8 725–833 Triangulum Galaxy L/Teff
LGGS J004519.82+415531.9 725 Andromeda Galaxy L/Teff
LGGS J004410.84+411538.8 725 Andromeda Galaxy L/Teff
LGGS J013407.38+305935.0 724 Triangulum Galaxy L/Teff
LGGS J004438.75+415553.6 724 Andromeda Galaxy L/Teff
LGGS J004324.16+411228.3 723 Andromeda Galaxy L/Teff
LGGS J004059.58+403815.6 723 Andromeda Galaxy L/Teff
LGGS J013327.40+304126.4 721 Triangulum Galaxy L/Teff
LGGS J013243.72+301912.5 721–783 Triangulum Galaxy L/Teff
Gaia DR3 303379932695513216 720 Triangulum Galaxy L/Teff
LGGS J004558.92+414642.1 720 Andromeda Galaxy L/Teff
LGGS J004103.46+403633.2 717 Andromeda Galaxy L/Teff
LGGS J013324.89+301754.3 717 Triangulum Galaxy L/Teff
LGGS J004015.18+405947.7 716 Andromeda Galaxy L/Teff
LGGS J013414.53+303557.7 715 Triangulum Galaxy L/Teff
LGGS J013351.89+303853.5 715 Triangulum Galaxy L/Teff
LGGS J004458.82+413050.4 715 Andromeda Galaxy L/Teff
LGGS J013352.51+303942.2 715 Triangulum Galaxy L/Teff
LGGS J004124.91+411133.1 715 Andromeda Galaxy L/Teff
LGGS J004604.18+415135.4 713 Andromeda Galaxy L/Teff
LGGS J013305.17+303119.8 711 Triangulum Galaxy L/Teff
LGGS J004517.25+413948.2 711 Andromeda Galaxy L/Teff
LGGS J013349.86+303246.1 710–795 Triangulum Galaxy L/Teff A yellow supergiant.
2MASS J01335929+3034435 709 Triangulum Galaxy L/Teff
LGGS J004230.32+405624.1 708 Andromeda Galaxy L/Teff
LGGS J004101.02+403506.1 708 Andromeda Galaxy L/Teff
LGGS J004119.21+411237.2 707 Andromeda Galaxy L/Teff
LGGS J004606.25+415018.9 707 Andromeda Galaxy L/Teff
LGGS J013442.05+304540.2 707–707 Triangulum Galaxy L/Teff
LGGS J013431.84+302721.5 707–717 Triangulum Galaxy L/Teff
LGGS J013304.68+304456.0 707–739 Triangulum Galaxy L/Teff
LGGS J004432.27+415158.4 705 Andromeda Galaxy L/Teff
2MASS J01335131+3039149 704 Triangulum Galaxy L/Teff
LGGS J013339.46+302113.0 703–748 Triangulum Galaxy L/Teff
LGGS J003935.36+401946.4 703 Andromeda Galaxy L/Teff
LGGS J013343.03+303433.5 702 Triangulum Galaxy L/Teff
LGGS J004505.87+413452.3 702 Andromeda Galaxy L/Teff
LGGS J013414.18+305248.0 701–731 Triangulum Galaxy L/Teff
LGGS J013402.53+304107.7 701–749 Triangulum Galaxy L/Teff
LGGS J013340.80+304248.5 701–814 Triangulum Galaxy L/Teff
LGGS J013312.59+303252.5 701 Triangulum Galaxy L/Teff
The following well-known stars are listed for the purpose of comparison.
Var 83 150 Triangulum Galaxy L/Teff A luminous blue variable and one of the most luminous stars in M33.

Other galaxies (within the Local Group)

List of the largest known stars in other galaxies (within the Local Group)
Star name Solar radii
(Sun = 1)
Galaxy Method Notes
Sextans A 10 995±130 Sextans A L/Teff
NGC 6822-RSG 19 930 NGC 6822 L/Teff
WLM 02 883+284
−167
WLM L/Teff
Sextans A 5 870±145 Sextans A L/Teff
NGC 6822-RSG 26 868 NGC 6822 L/Teff
NGC 6822-RSG 12 839 NGC 6822 L/Teff
Leo A 7 785 Leo A L/Teff
NGC 6822-RSG 9 765 NGC 6822 L/Teff
NGC 6822-RSG 6 714 NGC 6822 L/Teff
Sextans A 7 710±100 Sextans A L/Teff
The following well-known stars are listed for the purpose of comparison.
NGC 6822-WR 12 3.79 NGC 6822 L/Teff A Wolf-Rayet star, one of the hottest known stars.

Outside the Local Group (inside the Virgo supercluster)

List of the largest known stars in galaxies outside the Local Group inside the Virgo supercluster
Star name Solar radii
(Sun = 1)
Galaxy Group Method Notes
NGC 1313-310 1,668+168
−190
NGC 1313 L/Teff Luminosity has not yet been constrained well enough yet to confirm its extreme properties, and further observations are needed to show that it is a single, uncontaminated star. Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-125 1,504+176
−157
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 247-154 1,503+79
−75
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 7793-34 1,392+157
−160
NGC 7793 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 55-40 1,286
−106
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 2403 V14 1,260 NGC 2403 M81 Group L/Teff A F-type luminous blue variable.
NGC 300-154 1,200
−111
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-114 1,181
−111
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-199 1,181
−109
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-153 1,173
−109
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-150 1,167
−107
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 253-2006 1,167
−70
Sculptor Galaxy Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
SPIRITS 14atl 1,134–1,477 Messier 83 Centaurus A/M83 Group L/Teff
NGC 300-59 1,133
−129
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 7793-86 1,127
−109
NGC 7793 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-263 1,108
−102
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 247-447 1,101
−56
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
SPIRITS 15ahp 1,098 NGC 2403 M81 Group L/Teff
NGC 300-240 1,088
−101
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 7793-86 1,078
−64
NGC 7793 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-173 1,063
−77
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-340 1,036
−95
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-346 1,023
−128
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 247-533 1,004
−62
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-351 992
−102
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-524 987
−72
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 55-135 964
−89
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 55-93 955
−47
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 7793-539 948 NGC 7793 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 55-87 948
−98
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 55-146 921
−46
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-273 921
−85
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-186 915
−65
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 55-200 905
−55
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 55-152 895
−54
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-413 861
−61
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 55-174 856
−61
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
M81 10584-25-2 851 Messier 81 M81 Group L/Teff
M81 10584-13-3 843 Messier 81 M81 Group L/Teff
NGC 55-75 836
−111
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-545 824
−93
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 247-2912 821
−51
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 55-216 801
−89
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 247-1471 798
−48
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-499 796
−108
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-379 744
−52
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-838 744
−53
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 55-149 738
−55
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 55-194 730
−44
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
7 729 NGC 300 NGC 55 Group L/Teff
NGC 55-270 728
−36
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-1047 724
−59
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 247-3231 719
−51
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 247-2966 719
−52
NGC 247 Sculptor Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 55-245 717
−50
NGC 55 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-1068 716
−58
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
NGC 300-1081 712
−51
NGC 300 NGC 55 Group L/Teff Effective temperature is based on Titanium(II) oxide lines, which often results in lower values, therefore increasing the radius.
The following well-known stars are listed for the purpose of comparison.
NGC 2363-V1 194–356 NGC 2366 M81 Group L/Teff

Outside the Virgo supercluster

Note that this list does not include the candidate JWST dark stars, with estimated radii of up to 61 astronomical units (13,000 R) or Quasi-stars, with theoretical models suggesting that they could reach radii of up to 40,700 solar radii (189 au).

Star name Solar radii
(Sun = 1)
Galaxy Group Method Notes
Quyllur 965 L/Teff Likely the first red supergiant star at cosmological distances and is also discovered by James Webb Space Telescope.
The following well-known stars are listed for the purpose of comparison.
Godzilla 430–2,365 Sunburst galaxy L/Teff The most luminous known star.
Mothra 271 LS1 L/Teff A binary star at cosmological distances.

Transient events

During some transient events, such as red novae or LBV eruptions the star's radius can increase by a significant amount.

List of largest stars during transient events
Star or transient event name Solar radii
(Sun = 1)
Year Galaxy Group Method Notes
AT 2017jfs 33,000 2017 NGC 4470 L/Teff
SNhunt151 16,700 2014 UGC 3165 LDC 331 L/Teff
SN 2015bh 16,400±2,600 2015 NGC 2770 LDC 616 L/Teff
AT 2018hso 10,350 2018 NGC 3729 M109 Group L/Teff
AT 2023clx 6,800 2023 NGC 3799 nest 101314 L/Teff
M51 OT2019-1 5,500 2019 Whirlpool Galaxy M51 Group L/Teff
η Carinae 4,319 – 6,032 1845 Milky Way Local Group L/Teff During the outburst, the star became the second brightest star in sky, reaching an apparent magnitude of between −0.8 and −1.0.
AT 2010dn 4,130 2010 NGC 3180 LDC 743 L/Teff
SN 2011fh 3,980 2011 NGC 4806 Abell 3528 L/Teff
AT 2014ej 3,600 2014 NGC 7552 Grus Quartet L/Teff
V838 Monocerotis 3,190 2002 Milky Way Local Group L/Teff
SN2008S 3,020 2008 NGC 6946 NGC 6946 Group L/Teff
SNhunt120 2,900 2012 NGC 5775 Virgo Cluster L/Teff
AT 2017be 2,000 2017 NGC 2537 L/Teff
PHL 293B star 1,348 – 1,463 2002 PHL 293B L/Teff
SNhunt248 ~850 2014 NGC 5806 NGC 5846 Group L/Teff
R71 500 2012 Large Magellanic Cloud Local Group L/Teff
SN 2000ch 500 2000 NGC 3432 LDC 743 L/Teff
Godzilla 430 – 2,365 2015 Sunburst galaxy ?
AT 2016blu ~330 2012 – 2022 NGC 4559 Coma I Group L/Teff 19 outbursts were detected between 2012 and 2022. The star was likely relatively stable the decade before since no outbursts were detected from 1999 – 2009.

SN Progenitors

List of largest supernova progenitors
Star or supernova name Solar radii
(Sun = 1)
Year Galaxy Group Method Notes
SN 2020faa 1,000 2020 2MASS J14470904+7244157 L/Teff
SN 2023ixf 912+227
−222–1,060±30
2023 Pinwheel galaxy M101 Group L/Teff
SN 2020jfo 700±10 2020 Messier 61 Virgo Cluster L/Teff
SN 2023axu 417±28 2023 NGC 2283 L/Teff
SN 2021agco 78.37+25.59
−19.94
2021 UGC 3855 LDC 506 L/Teff Nearest ultrastripped supernova known.

Largest stars by apparent size

The following list include the largest stars by their apparent size (angular diameter) as seen from Earth. The unit of measurement is the milliarcsecond (mas), equivalent to 10×10 arcseconds. Stars with angular diameters larger than 13 milliarcseconds are included.

List of largest stars by apparent size (angular diameter)
Name Angular diameter
(mas)
Angular diameter type Distance
(light-years)
Spectral type Notes
Sun 2,000,000 0.000016 G2V The largest star by angular diameter.
R Doradus 51.18±1.24 LD

179±10

M8III:e The largest star by angular diameter apart from the Sun.
Betelgeuse
(α Orionis)
42.28±0.43 LD

408–540
−49

M1-M2Ia-Iab
Antares
(α Scorpii A)
37.31±0.09 LD 553.5±93.9 M1.5Iab
Mira
(ο Ceti)
28.9±0.3 – 34.9±0.4 Ross 299±33 M5-M9IIIe The angular diameter vary during Mira's pulsations.
Gacrux
(γ Crucis)
24.7 ? 88.6±0.4 M3.5III
Rasalgethi
(α Herculis)
23.95±5.03 Est 359±52 M5Ib-II
R Hydrae 23.7±1 ? 482±33 M6-9e
Arcturus
(α Boötis)
21.06±0.17 LD 36.8 K1.5IIIFe-0.5
π Gruis 21 ? 535 S5,7
Aldebaran
(α Tauri)
20.58–21.1 LD 65.3±1 K5+III
GY Aquilae 20.46 ? 1108±98 M8
R Lyrae 18.016±0.224 LD 310
−7
M4.5III
Scheat
(β Pegasi)
16.75±0.24 Ross 196±2 M2.5II-III
Gorgonea Tertia
(ρ Persei)
16.555±0.166 LD 308±7 M4+IIIa
SW Virginis 16.11±0.13–16.8±0.34 UD 527±46.9 M7III:
R Aquarii 15.61±0.8 – 16.59±1.03 LD 711
−36
M6.5–M8.5e
g Herculis 15.2±0.5 – 19.09±0.19 LD 385±10 M6-III
RS Cancri 15.1±0.5 – 17.2±0.4 LD 490±40 M6S
Tejat
(μ Geminorum)
15.118±0.151 LD 230±10 M3IIIab
R Leonis Minoris 14.4±0.87 LD 942
−47
M6.5-9e
S Cephei 14.29±2.28 LD 1591
−46
C7,3e
T Cassiopeiae 14.22±0.73 LD 893
−46
M7-9e
μ Cephei (Herschel's Garnet Star) 14.11 ± 0.6 3060
−130
M2Ia
Mirach
(β Andromedae)
13.749±0.137 LD 199±9 M0+IIIa
Menkar
(α Ceti)
13.238±0.056 LD 249±8 M1.5IIIa Other measurements include 12.2±0.04 mas.
V Cygni 13.1±0.208 – 14.84±2.37 LD 1747
−137
C7,4eJ

See also

Notes

  1. ^ Methods for calculating the radius:
  2. ^ At the J2000 epoch
  3. Using an angular diameter of 7.8±0.64 milliarcseconds and a distance of 1610+130
    −110 parsecs.
  4. Using an angular diameter of 14.11±0.6 milliarcseconds and a distance of 940+140
    −40 parsecs.
  5. Luminosities are calculated using the apparent bolometric magnitude and distances in the following equation:
    10
  6. Calculated using a distance of 432 parsecs and an angular diameter of 2.31 milliarcseconds.
  7. Legend:
    UD=Uniform disk diameter
    LD=Limb-darkened diameter
    Ross=Rosseland diameter
    Est = Estimated using distance and physical radius

References

  1. Mamajek, E. E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P. D.; Capitaine, N.; Christensen-Dalsgaard, J.; Depagne, E.; Folkner, W. M.; Haberreiter, M. (October 2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties". arXiv:1510.07674 .
  2. Rau, A.; Kulkarni, S. R.; Ofek, E. O.; Yan, L. (2007). "Spitzer Observations of the New Luminous Red Nova M85 OT2006-1". The Astrophysical Journal. 659 (2): 1536–1540. arXiv:astro-ph/0612161. Bibcode:2007ApJ...659.1536R. doi:10.1086/512672. S2CID 8913778.
  3. Haemmerlé, Lionel; Woods, T. E.; Klessen, Ralf S.; Heger, Alexander; Whalen, Daniel J. (2018). "The evolution of supermassive Population III stars". Monthly Notices of the Royal Astronomical Society. 474 (2): 2757–2773. arXiv:1705.09301. doi:10.1093/mnras/stx2919.
  4. Herrington, Nicholas P.; Whalen, Daniel J.; Woods, Tyrone E. (2023). "Modelling supermassive primordial stars with <SCP>mesa</SCP>". Monthly Notices of the Royal Astronomical Society. 521: 463–473. arXiv:2208.00008. doi:10.1093/mnras/stad572.
  5. Haemmerlé, L.; Klessen, R. S.; Mayer, L.; Zwick, L. (2021). "Maximum accretion rate of supermassive stars". Astronomy & Astrophysics. 652: L7. arXiv:2105.13373. Bibcode:2021A&A...652L...7H. doi:10.1051/0004-6361/202141376. S2CID 235247984.
  6. Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (July 2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal. 645 (2): 1102–1117. arXiv:astro-ph/0603596. Bibcode:2006ApJ...645.1102L. doi:10.1086/504417. ISSN 0004-637X. S2CID 5150686.
  7. Ren, Yi; Jiang, Bi-Wei (July 2020). "On the Granulation and Irregular Variation of Red Supergiants". The Astrophysical Journal. 898 (1): 24. arXiv:2006.06605. Bibcode:2020ApJ...898...24R. doi:10.3847/1538-4357/ab9c17. ISSN 0004-637X. S2CID 250739134.
  8. ^ "HORIZONS Web-Interface". ssd.jpl.nasa.gov. Retrieved 25 September 2021.
  9. ^ Healy, Sarah; Horiuchi, Shunsaku; Ashall, Chris (5 December 2024). "The Red Supergiant Problem: As Seen from the Local Group's Red Supergiant Populations". arXiv:2412.04386.
  10. ^ Humphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (August 2020). "Exploring the Mass Loss Histories of the Red Supergiants". The Astronomical Journal. 160 (3): 145. arXiv:2008.01108. Bibcode:2020AJ....160..145H. doi:10.3847/1538-3881/abab15. S2CID 220961677.
  11. ^ Montargès, M.; et al. (5 January 2023). "The VLT/SPHERE view of the ATOMIUM cool evolved star sample. I. Overview: Sample characterization through polarization analysis". Astronomy and Astrophysics. 671: A96. arXiv:2301.02081. Bibcode:2023A&A...671A..96M. doi:10.1051/0004-6361/202245398. S2CID 255440600.
  12. ^ Tabernero, H. M.; Dorda, R.; Negueruela, I.; Marfil, E. (February 2021). "The nature of VX Sagitarii: Is it a TŻO, a RSG, or a high-mass AGB star?". Astronomy & Astrophysics. 646: A98. arXiv:2011.09184. Bibcode:2021A&A...646A..98T. doi:10.1051/0004-6361/202039236. ISSN 0004-6361. S2CID 241206934.
  13. ^ Wing, Robert F. (September 2009). The Biggest Stars of All. The Biggest, Baddest, Coolest Stars ASP Conference Series. Vol. 412. p. 113. Bibcode:2009ASPC..412..113W. S2CID 117001990.
  14. ^ Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (April 2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy and Astrophysics. 540: L12. arXiv:1203.5194. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126. ISSN 0004-6361. S2CID 54044968.
  15. ^ Alcolea, J.; Bujarrabal, V.; Planesas, P.; Teyssier, D.; Cernicharo, J.; De Beck, E.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Melnick, G.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M. (November 2013). "HIFISTARS Herschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star". Astronomy & Astrophysics. 559: 25. arXiv:1310.2400. Bibcode:2013A&A...559A..93A. doi:10.1051/0004-6361/201321683. ISSN 0004-6361. S2CID 263787323.
  16. Gordon, Michael S.; Jones, Terry J.; Humphreys, Roberta M.; Ertel, Steve; Hinz, Philip M.; Hoffman, William F.; Stone, Jordan; Spalding, Eckhart; Vaz, Amali (February 2019). "Thermal Emission in the Southwest Clump of VY CMa". The Astronomical Journal. 157 (2): 57. arXiv:1811.05998. Bibcode:2019AJ....157...57G. doi:10.3847/1538-3881/aaf5cb. S2CID 119044678.
  17. Nguyen, Thinh H.; Guinan, Edward F. (11 January 2022). "Stars on the Verge: Analyses of the Complex Light Variations of the Hyper-luminous Red Supergiant VY Canis Majoris: On the Nature of the Star's "Great Dimming" Episodes". Research Notes of the AAS. 6 (1): 12. Bibcode:2022RNAAS...6...12N. doi:10.3847/2515-5172/ac4991. ISSN 2515-5172.
  18. ^ Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H. (June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy and Astrophysics. 554: A76. arXiv:1305.6179. Bibcode:2013A&A...554A..76A. doi:10.1051/0004-6361/201220920. ISSN 0004-6361. S2CID 73575062.
  19. ^ Norris, Ryan Patrick (13 December 2019). Seeing stars like never before: A long-term interferometric imaging survey of red supergiants. Physics and Astronomy Dissertations (Thesis). Georgia State University. Bibcode:2019PhDT........63N. doi:10.57709/15009706.
  20. ^ Richichi, A.; Percheron, I.; Khristoforova, M. (1 February 2005). "CHARM2: An updated Catalog of High Angular Resolution Measurements". Astronomy & Astrophysics. 431 (2): 773–777. Bibcode:2005A&A...431..773R. doi:10.1051/0004-6361:20042039. ISSN 0004-6361. Data about NML Cygni (IRC +40448) is found here at VizieR.
  21. Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.; Brunthaler, A. (2012). "The distance and size of the red hypergiant NML Cygni from VLBA and VLA astrometry" (PDF). Astronomy & Astrophysics. 544: A42. arXiv:1207.1850. Bibcode:2012A&A...544A..42Z. doi:10.1051/0004-6361/201219587. S2CID 55509287.
  22. Fok, Thomas K. T.; Nakashima, Jun-ichi; Yung, Bosco H. K.; Hsia, Chih-Hao; Deguchi, Shuji (November 2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal. 760 (1): 65. arXiv:1209.6427. Bibcode:2012ApJ...760...65F. doi:10.1088/0004-637X/760/1/65. ISSN 0004-637X. S2CID 53393926.
  23. ^ Healy, Sarah; Horiuchi, Shunsaku; Molla, Marta Colomer; Milisavljevic, Dan; Tseng, Jeff; Bergin, Faith; Weil, Kathryn; Tanaka, Masaomi (23 March 2024). "Red Supergiant Candidates for Multimessenger Monitoring of the Next Galactic Supernova". Monthly Notices of the Royal Astronomical Society. 529 (4): 3630–3650. arXiv:2307.08785. Bibcode:2024MNRAS.529.3630H. doi:10.1093/mnras/stae738. ISSN 0035-8711.
  24. Kusuno, K.; Asaki, Y.; Imai, H.; Oyama, T. (2013). "Distance and Proper Motion Measurement of the Red Supergiant, Pz Cas, in Very Long Baseline Interferometry H2O Maser Astrometry". The Astrophysical Journal. 774 (2): 107. arXiv:1308.3580. Bibcode:2013ApJ...774..107K. doi:10.1088/0004-637X/774/2/107. S2CID 118867155.
  25. ^ Ryan Norris. "Student Science at NMT: Learning Optical Interferometry Through Projects on Evolved Stars" (PDF). CHARA.
  26. Josselin, E.; Plez, B. (July 2007). "Atmospheric dynamics and the mass loss process in red supergiant stars". Astronomy & Astrophysics. 469 (2): 671–680. arXiv:0705.0266. Bibcode:2007A&A...469..671J. doi:10.1051/0004-6361:20066353. ISSN 0004-6361. S2CID 17789027.
  27. ^ Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (August 2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not As Cool As We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901. ISSN 0004-637X. S2CID 15109583.
  28. "Mu Cephei | aavso". www.aavso.org. Retrieved 6 October 2024.
  29. ^ Arévalo, Aura de Las Estrellas Ramírez (July 2018). The Red Supergiants in the Supermassive Stellar Cluster Westerlund 1 (text thesis). University of São Paulo. doi:10.11606/D.14.2019.tde-12092018-161841.
  30. Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M. -A.; Kamiński, T. (January 2014). "IRC −10414: a bow-shock-producing red supergiant star". Monthly Notices of the Royal Astronomical Society. 437 (1): 843–856. arXiv:1310.2245. Bibcode:2014MNRAS.437..843G. doi:10.1093/mnras/stt1943. ISSN 0035-8711.
  31. ^ Vallenari, A.; Brown, A. G. A.; Prusti, T. (13 June 2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics. 674. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. hdl:10902/30704. ISSN 0004-6361. S2CID 244398875.
  32. Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Miyawaki, Ryosuke; Miyoshi, Makoto; Miyazaki, Atsushi (April 2020). "Sub-millimeter detection of a Galactic center cool star IRS 7 by ALMA". Publications of the Astronomical Society of Japan. 72 (2): 36. arXiv:2002.01620. Bibcode:2020PASJ...72...36T. doi:10.1093/pasj/psaa013. ISSN 0004-6264.
  33. Guerço, Rafael; Smith, Verne V; Cunha, Katia; Ekström, Sylvia; Abia, Carlos; Plez, Bertrand; Meynet, Georges; Ramirez, Solange V; Prantzos, Nikos; Sellgren, Kris; Hayes, Cristian R; Majewski, Steven R (13 September 2022). "Evidence of deep mixing in IRS 7, a cool massive supergiant member of the Galactic nuclear star cluster". Monthly Notices of the Royal Astronomical Society. 516 (2): 2801–2811. arXiv:2208.10529. doi:10.1093/mnras/stac2393. ISSN 0035-8711.
  34. Rodríguez-Coira, G.; Gravity Collaboration (2021). "The Molecular Layer of GCIRS7". New Horizons in Galactic Center Astronomy and Beyond. 528: 397. Bibcode:2021ASPC..528..397R.
  35. Van Loon, J. Th.; Cioni, M.-R. L.; Zijlstra, A. A.; Loup, C. (18 April 2005). "An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars". Astronomy and Astrophysics. 438 (1): 273–289. arXiv:astro-ph/0504379. Bibcode:2005A&A...438..273V. doi:10.1051/0004-6361:20042555. S2CID 16724272.
  36. "GCVS: "==WY Vel"". VizieR. General Catalogue of Variable Stars @ Centre de données astronomiques de Strasbourg. Retrieved 11 February 2024.
  37. Norris, Ryan (27 February 2021). "An Interferometric Imaging Survey of Red Supergiant Stars". The 20.5Th Cambridge Workshop on Cool Stars: 263. Bibcode:2021csss.confE.263N. doi:10.5281/zenodo.4567641.
  38. ^ Anugu, Narsireddy; Gies, Douglas R.; Roettenbacher, Rachael M.; Monnier, John D.; Montargés, Miguel; Mérand, Antoine; Baron, Fabien; Schaefer, Gail H.; Shepard, Katherine A.; Kraus, Stefan; Anderson, Matthew D.; Codron, Isabelle; Gardner, Tyler; Gutierrez, Mayra; Köhler, Rainer (September 2024). "Time Evolution Images of the Hypergiant RW Cephei during the Rebrightening Phase Following the Great Dimming". The Astrophysical Journal Letters. 973 (1): L5. arXiv:2408.11906. Bibcode:2024ApJ...973L...5A. doi:10.3847/2041-8213/ad736c. ISSN 2041-8205.
  39. Davies, B.; Figer, D. F.; Law, C. J.; Kudritzki, R. P.; Najarro, F.; Herrero, A.; MacKenty, J. W. (2008). "The Cool Supergiant Population of the Massive Young Star Cluster RSGC1". The Astrophysical Journal. 676 (2): 1016–1028. arXiv:0711.4757. Bibcode:2008ApJ...676.1016D. doi:10.1086/527350. S2CID 15639297.
  40. Decin, Leen; Richards, Anita M. S.; Marchant, Pablo; Sana, Hugues (2024). "ALMA detection of CO rotational line emission in red supergiant stars of the massive young star cluster RSGC1". Astronomy & Astrophysics. 681: A17. arXiv:2303.09385. doi:10.1051/0004-6361/202244635.
  41. Massalkhi, S.; Agúndez, M.; Cernicharo, J. (August 2019). "Study of CS, SiO, and SiS abundances in carbon star envelopes: assessing their role as gas-phase precursors of dust". Astronomy & Astrophysics. 628: A62. arXiv:1906.09461. Bibcode:2019A&A...628A..62M. doi:10.1051/0004-6361/201935069. ISSN 0004-6361. PMC 6739229. PMID 31511746.
  42. van Genderen, A. M.; Lobel, A.; Nieuwenhuijzen, H.; Henry, G. W.; De Jager, C.; Blown, E.; Di Scala, G.; Van Ballegoij, E. J. (2019). "Pulsations, eruptions, and evolution of four yellow hypergiants". Astronomy and Astrophysics. 631: A48. arXiv:1910.02460. Bibcode:2019A&A...631A..48V. doi:10.1051/0004-6361/201834358. S2CID 203836020.
  43. ^ Comerón, F.; Djupvik, A. A.; Schneider, N.; Pasquali, A. (27 September 2020). "The historical record of massive star formation in Cygnus". Astronomy & Astrophysics. 2009: A62. arXiv:2009.12779. Bibcode:2020A&A...644A..62C. doi:10.1051/0004-6361/202039188. S2CID 221970180.
  44. Turner, David G.; Rohanizadegan, Mina; Berdnikov, Leonid N.; Pastukhova, Elena N. (November 2006). "The Long-Term Behavior of the Semiregular M Supergiant Variable BC Cygni". Publications of the Astronomical Society of the Pacific. 118 (849): 1533–1544. Bibcode:2006PASP..118.1533T. doi:10.1086/508905. ISSN 0004-6280. S2CID 121309425.
  45. Messineo, Maria; Figer, Donald F.; Kudritzki, Rolf-Peter; Zhu, Qingfeng; Menten, Karl M.; Ivanov, Valentin D.; Chen, C. -H. Rosie (2021). "New Infrared Spectral Indices of Luminous Cold Stars: From Early K to M Types". The Astronomical Journal. 162 (5): 187. arXiv:2107.03707. Bibcode:2021AJ....162..187M. doi:10.3847/1538-3881/ac116b. S2CID 235765247.
  46. ^ Bergeat, J.; Chevallier, L. (January 2005). "The mass loss of C-rich giants". Astronomy and Astrophysics. 429: 235–246. arXiv:astro-ph/0601366. Bibcode:2005A&A...429..235B. doi:10.1051/0004-6361:20041280. S2CID 56424665.
  47. González-Torà, G.; Wittkowski, M.; Davies, B.; Plez, B. (19 December 2023). "The effect of winds on atmospheric layers of red supergiants II. Modelling VLTI/GRAVITY and MATISSE observations of AH Sco, KW Sgr, V602 Car, CK Car and V460 Car". Astronomy & Astrophysics. 683: A19. arXiv:2312.12521. doi:10.1051/0004-6361/202348047. ISSN 0004-6361.
  48. Hopkins, Jeffrey L.; Bennett, Philip D.; Pollmann, Ernst (2015). "VV Cephei Eclipse Campaign 2017/19". The Society for Astronomical Sciences 34th Annual Symposium on Telescope Science. Published by Society for Astronomical Sciences. 34: 83. Bibcode:2015SASS...34...83H.
  49. Wright, K. O. (1 April 1977). "The System of VV Cephei Derived from an Analysis of the Hα Line". Journal of the Royal Astronomical Society of Canada. 71: 152. Bibcode:1977JRASC..71..152W. ISSN 0035-872X.
  50. Hack, M.; Engin, S.; Yilmaz, N.; Sedmak, G.; Rusconi, L.; Boehm, C. (1 November 1992). "Spectroscopic study of the atmospheric eclipsing binary VV Cephei". Astronomy and Astrophysics Supplement Series. 95: 589–601. Bibcode:1992A&AS...95..589H. ISSN 0365-0138.
  51. ^ De, Kishalay; Mereminskiy, Ilya; Soria, Roberto; Conroy, Charlie; Kara, Erin; Anand, Shreya; Ashley, Michael C. B.; Boyer, Martha L.; Chakrabarty, Deepto; Grefenstette, Brian; Hankins, Matthew J.; Hillenbrand, Lynne A.; Jencson, Jacob E.; Karambelkar, Viraj; Kasliwal, Mansi M. (1 August 2022). "SRGA J181414.6-225604: A New Galactic Symbiotic X-Ray Binary Outburst Triggered by an Intense Mass-loss Episode of a Heavily Obscured Mira Variable". The Astrophysical Journal. 935 (1): 36. arXiv:2205.09139. Bibcode:2022ApJ...935...36D. doi:10.3847/1538-4357/ac7c6e. ISSN 0004-637X. S2CID 248887540.
  52. ^ Siderud, Emelie (2020). Dust emission modelling of AGB stars.
  53. ^ Messineo, Maria (18 January 2023). "Identification of late-type Class I stars using Gaia DR3 Apsis parameters". Astronomy & Astrophysics. 671: A148. arXiv:2301.07415. Bibcode:2023A&A...671A.148M. doi:10.1051/0004-6361/202245587. S2CID 256486848.
  54. ^ Ramstedt, S.; Olofsson, H. (25 May 2014). "The CO/CO ratio in AGB stars of different chemical type. Connection to the C/C ratio and the evolution along the AGB". Astronomy and Astrophysics. 566: A145. arXiv:1405.6404. Bibcode:2014A&A...566A.145R. doi:10.1051/0004-6361/201423721. ISSN 0004-6361. S2CID 59125036.
  55. ^ Danilovich, T.; Teyssier, D.; Justtanont, K.; Olofsson, H.; Cerrigone, L.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Castro-Carrizo, A.; García-Lario, P.; Marston, A. (1 September 2015). "New observations and models of circumstellar CO line emission of AGB stars in the Herschel SUCCESS programme". Astronomy & Astrophysics. 581: A60. arXiv:1506.09065. Bibcode:2015A&A...581A..60D. doi:10.1051/0004-6361/201526705. ISSN 0004-6361.
  56. ^ Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N. L. J.; González-Alfonso, E.; Neufeld, D.; De Ridder, J.; Agúndez, M.; Blommaert, J. A. D. L.; Khouri, T. (April 2016). "Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars". Astronomy and Astrophysics. 588: A124. arXiv:1601.07017. Bibcode:2016A&A...588A.124L. doi:10.1051/0004-6361/201527049. ISSN 0004-6361. S2CID 62787287.
  57. Natale, G.; Rea, N.; Lazzati, D.; Perna, R.; Torres, D. F.; Girart, J. M. (25 January 2017). "Dust Radiative Transfer Modeling of the Infrared Ring around the Magnetar SGR 1900+14". The Astrophysical Journal. 837 (1): 10. arXiv:1701.07442. Bibcode:2017ApJ...837....9N. doi:10.3847/1538-4357/aa5c82. S2CID 119213779.
  58. ^ Schöier, F. L.; Ramstedt, S.; Olofsson, H.; Lindqvist, M.; Bieging, J. H.; Marvel, K. B. (February 2013). "The abundance of HCN in circumstellar envelopes of AGB stars of different chemical types". Astronomy & Astrophysics. 550: A78. arXiv:1301.2129. Bibcode:2013A&A...550A..78S. doi:10.1051/0004-6361/201220400. ISSN 0004-6361.
  59. ^ Van Belle, G. T.; Thompson, R. R.; Creech-Eakman, M. J. (2002). "Angular Size Measurements of Mira Variable Stars at 2.2 Microns. II". The Astronomical Journal. 124 (3): 1706–1715. arXiv:astro-ph/0210167. Bibcode:2002AJ....124.1706V. doi:10.1086/342282. S2CID 33832649.
  60. Decin, L.; Hony, S.; de Koter, A.; Molenberghs, G.; Dehaes, S.; Markwick-Kemper, F. (30 July 2007). "The variable mass loss of the AGB star WX Piscium as traced by the CO J = 1-0 through 7-6 lines and the dust emission". Astronomy & Astrophysics. 475 (1): 233–242. arXiv:0708.4107. doi:10.1051/0004-6361:20077737. ISSN 0004-6361.
  61. ^ Blum, R. D.; Ramírez, Solange V.; Sellgren, K.; Olsen, K. (3 July 2003). "Really Cool Stars and the Star Formation History at the Galactic Center". The Astrophysical Journal. 597 (1): 323–346. arXiv:astro-ph/0307291. Bibcode:2003ApJ...597..323B. doi:10.1086/378380. ISSN 0004-637X. S2CID 5664467.
  62. Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E.; Thureau, N.; ten Brummelaar, T. A.; Ridgway, S. T. (April 2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal. 785 (1): 46. arXiv:1405.4032. Bibcode:2014ApJ...785...46B. doi:10.1088/0004-637X/785/1/46. ISSN 0004-637X. S2CID 17085548.
  63. Asaki, Yoshiharu; Maud, Luke T.; Francke, Harold; Nagai, Hiroshi; Petry, Dirk; Fomalont, Edward B.; Humphreys, Elizabeth; Richards, Anita M. S.; Wong, Ka Tat; Dent, William; Hirota, Akihiko; Fernandez, Jose Miguel; Takahashi, Satoko; Hales, Antonio S. (November 2023). "ALMA High-frequency Long Baseline Campaign in 2021: Highest Angular Resolution Submillimeter Wave Images for the Carbon-rich Star R Lep". The Astrophysical Journal. 958 (1): 86. arXiv:2310.09664. Bibcode:2023ApJ...958...86A. doi:10.3847/1538-4357/acf619. ISSN 0004-637X.
  64. Wallstrom, S. H. J.; et al. (7 December 2023). "ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA". Astronomy & Astrophysics. 681: A50. arXiv:2312.03467. doi:10.1051/0004-6361/202347632.
  65. Ohnaka, K.; Hofmann, K. -H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (July 2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy and Astrophysics. 555: A24. arXiv:1304.4800. Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063. ISSN 0004-6361. S2CID 56396587.
  66. ^ Hoffleit, D.; Warren, W. H. Jr. (November 1995). "VizieR Online Data Catalog: Bright Star Catalogue, 5th Revised Ed. (Hoffleit+, 1991)". VizieR Online Data Catalog: V/50. Bibcode:1995yCat.5050....0H.
  67. Mittag, M.; Schröder, K. -P.; Perdelwitz, V.; Jack, D.; Schmitt, J. H. M. M. (1 January 2023), "Chromospheric activity and photospheric variation of α Ori during the great dimming event in 2020", Astronomy and Astrophysics, 669: A9, arXiv:2211.04967, Bibcode:2023A&A...669A...9M, doi:10.1051/0004-6361/202244924, ISSN 0004-6361
  68. ^ Joyce, Meridith; Leung, Shing-Chi; Molnár, László; Ireland, Michael; Kobayashi, Chiaki; Nomoto, Ken'ichi (October 2020). "Standing on the Shoulders of Giants: New Mass and Distance Estimates for Betelgeuse through Combined Evolutionary, Asteroseismic, and Hydrodynamic Simulations with MESA". The Astrophysical Journal. 902 (1): 63. arXiv:2006.09837. Bibcode:2020ApJ...902...63J. doi:10.3847/1538-4357/abb8db. ISSN 0004-637X. S2CID 221507952.
  69. MacLeod, Morgan; Blunt, Sarah; De Rosa, Robert J.; Dupree, Andrea K.; Granzer, Thomas; Harper, Graham M.; Huang, Caroline D.; Leiner, Emily M.; Loeb, Abraham (17 September 2024). "Radial Velocity and Astrometric Evidence for a Close Companion to Betelgeuse". arXiv:2409.11332.
  70. Mittag, M.; Schröder, K. -P.; Perdelwitz, V.; Jack, D.; Schmitt, J. H. M. M. (January 2023). "Chromospheric activity and photospheric variation of α Ori during the great dimming event in 2020". Astronomy & Astrophysics. 669: 18. arXiv:2211.04967. Bibcode:2023A&A...669A...9M. doi:10.1051/0004-6361/202244924. ISSN 0004-6361. S2CID 253406622.
  71. Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging". Astronomy & Astrophysics. 614: A12. arXiv:1802.06086. Bibcode:2018A&A...614A..12M. doi:10.1051/0004-6361/201731471. ISSN 0004-6361. S2CID 118950270.
  72. Anugu, Narsireddy; et al. (7 August 2024). "CHARA Near-Infrared Imaging of the Yellow Hypergiant Star ρ Cassiopeiae: Convection Cells and Circumstellar Envelope". The Astrophysical Journal. 974 (1): 113. arXiv:2408.02756v2. Bibcode:2024ApJ...974..113A. doi:10.3847/1538-4357/ad6b2b.
  73. Schmidt, M. R.; He, J. H.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Justtanont, K.; Teyssier, D.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Marston, A. P.; Sobolev, A. M. (August 2016). "Herschel /HIFI observations of the circumstellar ammonia lines in IRC+10216". Astronomy & Astrophysics. 592: A131. arXiv:1606.01878. Bibcode:2016A&A...592A.131S. doi:10.1051/0004-6361/201527290. ISSN 0004-6361. PMC 5217166. PMID 28065983.
  74. Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. (1 October 2012). "The hypergiant HR 8752 evolving through the yellow evolutionary void". Astronomy and Astrophysics. 546: A105. Bibcode:2012A&A...546A.105N. doi:10.1051/0004-6361/201117166. ISSN 0004-6361.
  75. Groenewegen, M. A. T. (2020). "Analysing the spectral energy distributions of Galactic classical Cepheids". Astronomy and Astrophysics. 635: A33. arXiv:2002.02186. Bibcode:2020A&A...635A..33G. doi:10.1051/0004-6361/201937060. S2CID 211043995.
  76. Kamiński, Tomek; Tylenda, Romuald; Kiljan, Aleksandra; Schmidt, Mirek; Lisiecki, Krzysztof; Melis, Carl; Frankowski, Adam; Joshi, Vishal; Menten, Karl M. (1 November 2021). "V838 Monocerotis as seen by ALMA: A remnant of a binary merger in a triple system". Astronomy & Astrophysics. 655: A32. arXiv:2106.07427. Bibcode:2021A&A...655A..32K. doi:10.1051/0004-6361/202141526. ISSN 0004-6361. S2CID 235422695.
  77. ^ Tylenda, R. (1 June 2005). "Evolution of V838 Monocerotis during and after the 2002 eruption". Astronomy & Astrophysics. 436 (3): 1009–1020. arXiv:astro-ph/0502060. Bibcode:2005A&A...436.1009T. doi:10.1051/0004-6361:20052800. ISSN 0004-6361. S2CID 3566688.
  78. Najarro, Francisco; Figer, Don F.; Hillier, D. John; Geballe, T. R.; Kudritzki, Rolf P. (February 2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal. 691 (2): 1816–1827. arXiv:0809.3185. Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816. ISSN 0004-637X. S2CID 15473563.
  79. Libert, Y.; Gerard, E.; Le Bertre, T. (10 September 2007). "The formation of a detached shell around the carbon star Y CVn". Monthly Notices of the Royal Astronomical Society. 380 (3): 1161–1171. arXiv:0706.4211. Bibcode:2007MNRAS.380.1161L. doi:10.1111/j.1365-2966.2007.12154.x.
  80. Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Richichi, A.; Schertl, D.; Schöller, M.; Scholz, M.; Weigelt, G.; Wittkowski, M.; Wood, P. R. (July 2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics. 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826. ISSN 0004-6361. S2CID 17009595.
  81. ^ Ohnaka, Keiichi; Weigelt, Gerd; Hofmann, Karl-Heinz (24 September 2019). "Infrared interferometric three-dimensional diagnosis of the atmospheric dynamics of the AGB star R Dor with VLTI/AMBER". The Astrophysical Journal. 883 (1): 89. arXiv:1908.06997. Bibcode:2019ApJ...883...89O. doi:10.3847/1538-4357/ab3d2a. ISSN 1538-4357. S2CID 201103617.
  82. ^ Moravveji, Ehsan; Guinan, Edward F.; Khosroshahi, Habib; Wasatonic, Rick (December 2013). "The Age and Mass of the α Herculis Triple-star System from a MESA Grid of Rotating Stars with 1.3". The Astronomical Journal. 146 (6): 148. arXiv:1308.1632. Bibcode:2013AJ....146..148M. doi:10.1088/0004-6256/146/6/148. ISSN 0004-6256. S2CID 117872505.
  83. Clark, J. S.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Urbaneja, M. A.; Howarth, I. D. (May 2012). "On the nature of the galactic early-B hypergiants". Astronomy & Astrophysics. 541: A145. arXiv:1202.3991. Bibcode:2012A&A...541A.145C. doi:10.1051/0004-6361/201117472. ISSN 0004-6361. S2CID 11978733.
  84. Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Ayres, Thomas R.; Ohnaka, Keiichi; Griffin, Elizabeth (2022). "HST STIS Observations of ζ Aurigae A's Irradiated Atmosphere". The Astronomical Journal. 164 (1): 16. Bibcode:2022AJ....164...16H. doi:10.3847/1538-3881/ac6feb. S2CID 250101470.
  85. ^ McDonald, I.; Zijlstra, A. A.; Watson, R. A. (1 October 2017), "Fundamental parameters and infrared excesses of Tycho-Gaia stars", Monthly Notices of the Royal Astronomical Society, 471 (1): 770–791, arXiv:1706.02208, Bibcode:2017MNRAS.471..770M, doi:10.1093/mnras/stx1433, ISSN 0035-8711 Note: See VizieR catalogue
  86. Gull, Theodore R.; Hillier, D. John; Hartman, Henrik; Corcoran, Michael F.; Damineli, Augusto; Espinoza-Galeas, David; Hamaguchi, Kenji; Navarete, Felipe; Nielsen, Krister; Madura, Thomas; Moffat, Anthony F. J.; Morris, Patrick; Richardson, Noel D.; Russell, Christopher M. P.; Stevens, Ian R. (1 July 2022). "Eta Carinae: an evolving view of the central binary, its interacting winds and its foreground ejecta". The Astrophysical Journal. 933 (2): 175. arXiv:2205.15116. Bibcode:2022ApJ...933..175G. doi:10.3847/1538-4357/ac74c2. ISSN 0004-637X.
  87. ^ Davidson, Kris (5 February 2020). "Radiation-Driven Stellar Eruptions". Galaxies. 8 (1): 10. arXiv:2009.02340. Bibcode:2020Galax...8...10D. doi:10.3390/galaxies8010010. ISSN 2075-4434.
  88. Chesneau, O.; Dessart, L.; Mourard, D.; Bério, Ph.; Buil, Ch.; Bonneau, D.; Borges Fernandes, M.; Clausse, J. M.; Delaa, O.; Marcotto, A.; Meilland, A.; Millour, F.; Nardetto, N.; Perraut, K.; Roussel, A. (October 2010). "Time, spatial, and spectral resolution of the Hαline-formation region of Deneb and Rigel with the VEGA/CHARA interferometer". Astronomy and Astrophysics. 521: A5. arXiv:1007.2095. doi:10.1051/0004-6361/201014509. ISSN 0004-6361.
  89. Schiller, F.; Przybilla, N. (March 2008). "Quantitative spectroscopy of Deneb". Astronomy and Astrophysics. 479 (3): 849–858. arXiv:0712.0040. Bibcode:2008A&A...479..849S. doi:10.1051/0004-6361:20078590. ISSN 0004-6361. S2CID 103635615.
  90. ^ Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.; Zavala, R. T.; Benson, James A.; Hutter, Donald J.; Tycner, Christopher; van Belle, Gerard T. (20 December 2017). "Fundamental Parameters of 87 Stars from the Navy Precision Optical Interferometer". The Astronomical Journal. 155 (1): 30. arXiv:1712.08109. Bibcode:2018AJ....155...30B. doi:10.3847/1538-3881/aa9d8b. ISSN 1538-3881.
  91. Souza, A. Domiciano de; Zorec, J.; Millour, F.; Bouquin, J.-B. Le; Spang, A.; Vakili, F. (1 October 2021). "Refined fundamental parameters of Canopus from combined near-IR interferometry and spectral energy distribution". Astronomy & Astrophysics. 654: A19. arXiv:2109.07153. Bibcode:2021A&A...654A..19D. doi:10.1051/0004-6361/202140478. ISSN 0004-6361. S2CID 237513623.
  92. ^ Nielsen, Krister E.; Airapetian, Vladimir S.; Carpenter, Kenneth G.; Rau, Gioia (1 August 2023). "The Advanced Spectral Library: The Evolution of Chromospheric Wind Characteristics from Noncoronal to Hybrid Giant Stars". The Astrophysical Journal. 953 (1): 16. Bibcode:2023ApJ...953...16N. doi:10.3847/1538-4357/acdcf1. ISSN 0004-637X.
  93. Evans, Nancy Remage; Schaefer, Gail H.; Gallenne, Alexandre; Torres, Guillermo; Horch, Elliott P.; Anderson, Richard I.; Monnier, John D.; Roettenbacher, Rachael M.; Baron, Fabien; Anugu, Narsireddy; Davidson, James W.; Kervella, Pierre; Bras, Garance; Proffitt, Charles; Mérand, Antoine (1 August 2024). "The Orbit and Dynamical Mass of Polaris: Observations with the CHARA Array". The Astrophysical Journal. 971 (2): 190. arXiv:2407.09641. Bibcode:2024ApJ...971..190E. doi:10.3847/1538-4357/ad5e7a. ISSN 0004-637X.
  94. Hatzes, A. P.; Cochran, W. D.; Endl, M.; Guenther, E. W.; MacQueen, P.; Hartmann, M.; Zechmeister, M.; Han, I.; Lee, B.-C.; Walker, G. a. H.; Yang, S.; Larson, A. M.; Kim, K.-M.; D. E. Mkrtichian; Döllinger, M. (1 August 2015). "Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity". Astronomy & Astrophysics. 580: A31. arXiv:1505.03454. Bibcode:2015A&A...580A..31H. doi:10.1051/0004-6361/201425519. ISSN 0004-6361. S2CID 53324086.
  95. Ramirez, I.; Prieto, C. Allende (20 December 2011). "Fundamental Parameters and Chemical Composition of Arcturus". The Astrophysical Journal. 743 (2): 135. arXiv:1109.4425. Bibcode:2011ApJ...743..135R. doi:10.1088/0004-637X/743/2/135. ISSN 0004-637X. S2CID 119186472.
  96. Tkachenko, A.; et al. (May 2016), "Stellar modelling of Spica, a high-mass spectroscopic binary with a β Cep variable primary component", Monthly Notices of the Royal Astronomical Society, 458 (2): 1964–1976, arXiv:1601.08069, Bibcode:2016MNRAS.458.1964T, doi:10.1093/mnras/stw255, S2CID 26945389
  97. McAlister, H. A.; ten Brummelaar, T. A.; Gies; Huang; Bagnuolo, Jr.; Shure; Sturmann; Sturmann; Turner; Taylor; Berger; Baines; Grundstrom; Ogden; Ridgway; Van Belle; et al. (2005). "First Results from the CHARA Array. I. An Interferometric and Spectroscopic Study of the Fast Rotator Alpha Leonis (Regulus)". The Astrophysical Journal. 628 (1): 439–452. arXiv:astro-ph/0501261. Bibcode:2005ApJ...628..439M. doi:10.1086/430730. S2CID 6776360.
  98. Monnier, J. D.; Che, Xiao; Zhao, Ming; Ekström, S.; Maestro, V.; Aufdenberg, Jason; Baron, F.; Georgy, C.; Kraus, S.; McAlister, H.; Pedretti, E. (December 2012). "Resolving Vega and the Inclination Controversy with CHARA/MIRC". The Astrophysical Journal. 761 (1): L3. arXiv:1211.6055. Bibcode:2012ApJ...761L...3M. doi:10.1088/2041-8205/761/1/L3. ISSN 0004-637X. S2CID 17950155.
  99. Bouchaud, K.; Domiciano de Souza, A.; Rieutord, M.; Reese, D. R.; Kervella, P. (1 January 2020). "A realistic two-dimensional model of Altair". Astronomy and Astrophysics. 633: A78. arXiv:1912.03138. Bibcode:2020A&A...633A..78B. doi:10.1051/0004-6361/201936830. ISSN 0004-6361.
  100. Davis, J.; et al. (October 2010). "The Angular Diameter and Fundamental Parameters of Sirius A". Publications of the Astronomical Society of Australia. 28: 58–65. arXiv:1010.3790. doi:10.1071/AS10010.
  101. Akeson, Rachel; Beichman, Charles; Kervella, Pierre; Fomalont, Edward; Benedict, G. Fritz (14 June 2021). "Precision Millimeter Astrometry of the α Centauri AB System". The Astronomical Journal. 162 (1): 14. arXiv:2104.10086. Bibcode:2021AJ....162...14A. doi:10.3847/1538-3881/abfaff. ISSN 0004-6256.
  102. Kamath, D.; Wood, P. R.; Van Winckel, H. (1 December 2015). "Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud". Monthly Notices of the Royal Astronomical Society. 454 (2): 1468–1502. arXiv:1508.00670. doi:10.1093/mnras/stv1202. ISSN 0035-8711.
  103. ^ Beasor, Emma R.; Smith, Nathan (1 May 2022). "The Extreme Scarcity of Dust-enshrouded Red Supergiants: Consequences for Producing Stripped Stars via Winds". The Astrophysical Journal. 933 (1): 41. arXiv:2205.02207. Bibcode:2022ApJ...933...41B. doi:10.3847/1538-4357/ac6dcf. S2CID 248512934.
  104. ^ Massey, Philip; Neugent, Kathryn F.; Ekstrom, Sylvia; Georgy, Cyril; Georges, Meynet (2023). "The Time-Averaged Mass-Loss Rates of Red Supergiants As Revealed by their Luminosity Functions in M31 and M33". The Astrophysical Journal. 942 (2): 35. arXiv:2211.14147. Bibcode:2023ApJ...942...69M. doi:10.3847/1538-4357/aca665. S2CID 254018399.
  105. ^ Goldman, Steven R.; van Loon, Jacco Th.; Zijlstra, Albert A.; Green, James A.; Wood, Peter R.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Matsuura, Mikako; Groenewegen, Martin A. T.; Gómez, José F. (11 February 2017). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society. 465 (1): 403–433. arXiv:1610.05761. Bibcode:2017MNRAS.465..403G. doi:10.1093/mnras/stw2708. ISSN 0035-8711.
  106. ^ Groenewegen, M. A. T.; Sloan, G. C. (January 2018). "Luminosities and mass-loss rates of Local Group AGB stars and red supergiants". Astronomy & Astrophysics. 609: A114. arXiv:1711.07803. Bibcode:2018A&A...609A.114G. doi:10.1051/0004-6361/201731089. ISSN 0004-6361. S2CID 59327105.
  107. ^ University, Keele (December 2017). Research, Keele University (doctoral thesis). Keele University.
  108. ^ Neugent, Kathryn F.; Levesque, Emily M.; Massey, Philip; Morrell, Nidia I.; Drout, Maria R. (8 September 2020). "The Red Supergiant Binary Fraction of the Large Magellanic Cloud". The Astrophysical Journal. 900 (2): 118. arXiv:2007.15852. Bibcode:2020ApJ...900..118N. doi:10.3847/1538-4357/ababaa. ISSN 1538-4357.
  109. ^ Munoz-Sanchez, G.; de Wit, S.; Bonanos, A. Z.; Antoniadas, K.; Boutsia, K.; Boumis, P.; Christodoulou, E.; Kalitsounaki, M.; Udalski, A. (21 May 2024). "Episodic mass loss in the very luminous red supergiant [W60] B90 in the Large Magellanic Cloud". Astronomy & Astrophysics. 690: A99. arXiv:2405.11019. Bibcode:2024A&A...690A..99M. doi:10.1051/0004-6361/202450737.
  110. ^ Chen, Kaitlyn M.; Dorn-Wallenstein, Trevor Z. (March 2024). "A Spectroscopic Hunt for Post-red Supergiants in the Large Magellanic Cloud. I. Preliminary Results". Research Notes of the AAS. 8 (3): 75. arXiv:2403.08048. Bibcode:2024RNAAS...8...75C. doi:10.3847/2515-5172/ad32bb. ISSN 2515-5172. S2CID 268378990.
  111. ^ de Wit, S.; Bonanos, A.Z.; Tramper, F.; Yang, M.; Maravelias, G.; Boutsia, K.; Britavskiy, N.; Zapartas, E. (2023). "Properties of luminous red supergiant stars in the Magellanic Clouds". Astronomy and Astrophysics. 669: 17. arXiv:2209.11239. Bibcode:2023A&A...669A..86D. doi:10.1051/0004-6361/202243394. S2CID 252519285.
  112. ^ Martin, John C.; Humphreys, Roberta M. (30 October 2023). "A Census of the Most Luminous Stars. I. The Upper HR Diagram for the Large Magellanic Cloud". The Astronomical Journal. 166 (5): 214. Bibcode:2023AJ....166..214M. doi:10.3847/1538-3881/ad011e. ISSN 0004-6256.
  113. ^ García-Hernández, D. A.; Manchando, A.; Lambert, D. L.; Plez, B.; García-Lario, P.; D'Antona, F.; Lugaro, M.; Karakas, A. I.; van Raai, M. A. (8 October 2009). "Rb-Rich Asymptotic Giant Branch Stars in the Magellanic Clouds". The Astrophysical Journal Letters. 705 (1): L31 – L35. arXiv:0909.4391. Bibcode:2009ApJ...705L..31G. doi:10.1088/0004-637X/705/1/L31. ISSN 0004-637X. S2CID 17864885.
  114. ^ Britavskyi, N.; Lennon, D. J.; Patrick, L. R.; Evans, C. J.; Herrero, A.; Langer, N.; van Loon, J. Th.; Clark, J. S.; Schneider, F. R. N.; Almeida, L. A.; Sana, H.; de Koter, A.; Taylor, W. D. (26 February 2019). "The VLT-FLAMES Tarantula Survey. XXX. Red stragglers in the clusters Hodge 301 and SL 639". Astronomy & Astrophysics. 624: 13. arXiv:1902.09891. Bibcode:2019A&A...624A.128B. doi:10.1051/0004-6361/201834564. S2CID 244683559.
  115. ^ Munoz-Sanchez, G.; et al. (28 November 2024). "The dramatic transition of the extreme Red Supergiant WOH G64 to a Yellow Hypergiant". arXiv:2411.19329.
  116. Ohnaka, K.; Driebe, T.; Hofmann, K. -H.; Weigelt, T.; Wittkowski, M. (16 April 2008). "Spatially resolved dusty torus toward the red supergiant WOH G64 in the Large Magellanic Cloud". Astronomy and Astrophysics. 484 (2): 371–379. arXiv:0803.3823. Bibcode:2008A&A...484..371O. doi:10.1051/0004-6361:200809469. ISSN 0004-6361. S2CID 10451475.
  117. Ohnaka, Keiichi; Driebe, Thomas; Hofmann, Karl-Heinz; Weigelt, Gerd; Wittkowski, Markus (March 2009). "Resolving the dusty torus and the mystery surrounding LMC red supergiant WOH G64". Proceedings of the International Astronomical Union. 256: 454–458. Bibcode:2009IAUS..256..454O. doi:10.1017/S1743921308028858. ISSN 1743-9213. S2CID 120287846.
  118. ^ Levesque, Emily M.; Massey, Philip; Plez, Bertrand; Olsen, Knut A. G. (2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". The Astronomical Journal. 137 (6): 4744. arXiv:0903.2260. Bibcode:2009AJ....137.4744L. doi:10.1088/0004-6256/137/6/4744. S2CID 18074349.
  119. Levesque, E. M. (June 2010). The Physical Properties of Red Supergiants. Hot and Cool: Bridging Gaps in Massive Star Evolution ASP Conference Series. Vol. 425. p. 103. arXiv:0911.4720. Bibcode:2010ASPC..425..103L. S2CID 8921166.
  120. Steven R. Goldman; Jacco Th. van Loon (2016). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society. 465 (1): 403–433. arXiv:1610.05761. Bibcode:2017MNRAS.465..403G. doi:10.1093/mnras/stw2708. S2CID 11352637.
  121. ^ Dorn-Wallenstein, Trevor Z.; Levesque, Emily M.; Davenport, James R. A.; Neugent, Kathryn F.; Morris, Brett M.; Bostroem, K. Azalee (1 November 2022). "The Properties of Fast Yellow Pulsating Supergiants: FYPS Point the Way to Missing Red Supergiants". The Astrophysical Journal. 940 (1): 27. arXiv:2206.11917. Bibcode:2022ApJ...940...27D. doi:10.3847/1538-4357/ac79b2. ISSN 0004-637X.
  122. ^ Beasor, Emma R; Davies, Ben; Cabrera-Ziri, Ivan; Hurst, Georgia (21 September 2018). "A critical re-evaluation of the Thorne–Żytkow object candidate HV 2112". Monthly Notices of the Royal Astronomical Society. 479 (3): 3101–3105. arXiv:1806.07399. Bibcode:2018MNRAS.479.3101B. doi:10.1093/mnras/sty1744. ISSN 0035-8711.
  123. Glatzel, Wolfgang; Kraus, Michaela (23 March 2024). "Instabilities in the yellow hypergiant domain". Monthly Notices of the Royal Astronomical Society. 529 (4): 4947–4957. doi:10.1093/mnras/stae861. ISSN 0035-8711.
  124. Lamers, H. J. G. L. M. (1 January 1995). "Observations and Interpretation of Luminous Blue Variables". IAU Colloq. 155: Astrophysical Applications of Stellar Pulsation. 83: 176. Bibcode:1995ASPC...83..176L.
  125. ^ Kastner, Joel H.; Buchanan, Catherine L.; Sargent, B.; Forrest, W. J. (10 February 2006). "Spitzer Spectroscopy of Dusty Disks around B[e] Hypergiants in the Large Magellanic Cloud". The Astrophysical Journal. 638 (1): L29 – L32. Bibcode:2006ApJ...638L..29K. doi:10.1086/500804. ISSN 0004-637X. S2CID 121769413.
  126. Brands, Sarah A.; Koter, Alex de; Bestenlehner, Joachim M.; Crowther, Paul A.; Sundqvist, Jon O.; Puls, Joachim; Caballero-Nieves, Saida M.; Abdul-Masih, Michael; Driessen, Florian A.; García, Miriam; Geen, Sam; Gräfener, Götz; Hawcroft, Calum; Kaper, Lex; Keszthelyi, Zsolt (1 July 2022). "The R136 star cluster dissected with Hubble Space Telescope/STIS – III. The most massive stars and their clumped winds". Astronomy & Astrophysics. 663: A36. arXiv:2202.11080. Bibcode:2022A&A...663A..36B. doi:10.1051/0004-6361/202142742. ISSN 0004-6361. S2CID 247025548.
  127. Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W.-R. (May 2014). "The Wolf-Rayet stars in the Large Magellanic Cloud: A comprehensive analysis of the WN class⋆⋆⋆". Astronomy & Astrophysics. 565: A27. arXiv:1401.5474. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696. ISSN 0004-6361. S2CID 55123954.
  128. Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A. F. J.; Eldridge, J. J.; Pablo, H.; Oskinova, L. M.; Richardson, N. D. (July 2017). "Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries". Astronomy & Astrophysics. 591: A22. arXiv:1604.01022. Bibcode:2016A&A...591A..22S. doi:10.1051/0004-6361/201527916. ISSN 0004-6361. S2CID 119255408.
  129. ^ Drout, Maria R.; Massey, Philip; Meynet, Georges (April 2012). "THE YELLOW AND RED SUPERGIANTS OF M33*". The Astrophysical Journal. 750 (2): 97. arXiv:1203.0247. Bibcode:2012ApJ...750...97D. doi:10.1088/0004-637X/750/2/97. ISSN 0004-637X. S2CID 119160120.
  130. Massey, Philip; Evans, Kate Anne (August 2016). "The Red Supergiant Content of M31*". The Astrophysical Journal. 826 (2): 224. arXiv:1605.07900. Bibcode:2016ApJ...826..224M. doi:10.3847/0004-637X/826/2/224. ISSN 0004-637X.
  131. ^ Massey, Philip; Silva, David R.; Levesque, Emily M.; Plez, Bertrand; Olsen, Knut A. G.; Clayton, Geoffrey C.; Meynet, Georges; Maeder, Andre (September 2009). "Red Supergiants in the Andromeda Galaxy (M31)". The Astrophysical Journal. 703 (1): 420–440. arXiv:0907.3767. Bibcode:2009ApJ...703..420M. doi:10.1088/0004-637X/703/1/420. S2CID 119293010. Retrieved 30 September 2023.
  132. Kourniotis, M.; Bonanos, A. Z.; Yuan, W.; Macri, L. M.; Garcia-Alvarez, D.; Lee, C.-H. (1 May 2017). "Monitoring luminous yellow massive stars in M 33: new yellow hypergiant candidates". Astronomy & Astrophysics. 601: A76. arXiv:1612.06853. Bibcode:2017A&A...601A..76K. doi:10.1051/0004-6361/201629146. ISSN 0004-6361. S2CID 55559261.
  133. Valeev, A. F.; Sholukhova, O.; Fabrika, S. (11 June 2009). "A new luminous variable in M33". Monthly Notices of the Royal Astronomical Society: Letters. 396 (1): L21 – L25. arXiv:0903.5222. Bibcode:2009MNRAS.396L..21V. doi:10.1111/j.1745-3933.2009.00654.x. S2CID 14666975.
  134. ^ Britavskiy, N. E.; Bonanos, A. Z.; Herrero, A.; Cerviño, M.; García-Álvarez, D.; Boyer, M. L.; Masseron, T.; Mehner, A.; McQuinn, K. B. W. (November 2019). "Physical parameters of red supergiants in dwarf irregular galaxies in the Local Group". Astronomy and Astrophysics. 631: A95. arXiv:1909.13378. Bibcode:2019A&A...631A..95B. doi:10.1051/0004-6361/201935212. ISSN 0004-6361. S2CID 203593402.
  135. Neugent, Kathryn (2021). "Locating Red Supergiants in the Galaxy NGC 6822". arXiv:2112.03990 .
  136. González-Torà, Gemma; Davies, Ben; Kudritzki, Rolf-Peter; Plez, Bertrand (23 June 2021). "The temperatures of red supergiants in low-metallicity environments". Monthly Notices of the Royal Astronomical Society. 505 (3): 4422–4443. arXiv:2106.01807. doi:10.1093/mnras/stab1611. ISSN 0035-8711.
  137. Neugent, Kathryn (2021). "Locating Red Supergiants in the Galaxy NGC 6822". arXiv:2112.03990 .
  138. Neugent, Kathryn (2021). "Locating Red Supergiants in the Galaxy NGC 6822". arXiv:2112.03990 .
  139. Jones, Olivia C.; Maclay, Matthew T.; Boyer, Martha L.; Meixner, Margaret; McDonald, Iain; Meskhidze, Helen (1 February 2018). "Near-infrared Stellar Populations in the Metal-poor, Dwarf Irregular Galaxies Sextans A and Leo A". The Astrophysical Journal. 854 (2): 117. arXiv:1712.06594. Bibcode:2018ApJ...854..117J. doi:10.3847/1538-4357/aaa542. ISSN 0004-637X. S2CID 119199303.
  140. Neugent, Kathryn (2021). "Locating Red Supergiants in the Galaxy NGC 6822". arXiv:2112.03990 .
  141. Neugent, Kathryn (2021). "Locating Red Supergiants in the Galaxy NGC 6822". arXiv:2112.03990 .
  142. Bibcode:2004PhDT.......161A
  143. ^ de Wit, S.; Bonanos, A. Z.; Antoniadis, K.; Zapartas, E.; Ruiz, A.; Britavskiy, N.; Christodoulou, E.; De, K.; Maravelias, G. (19 February 2024), "Investigating episodic mass loss in evolved massive stars", Astronomy & Astrophysics, 689: A46, arXiv:2402.12442, doi:10.1051/0004-6361/202449607
  144. ^ Humphreys, Roberta M.; Stangl, Sarah; Gordon, Michael S.; Davidson, Kris; Grammer, Skyler H. (January 2019). "Luminous and Variable Stars in NGC 2403 and M81". The Astronomical Journal. 157 (1): 22. arXiv:1811.06559. Bibcode:2019AJ....157...22H. doi:10.3847/1538-3881/aaf1ac. ISSN 0004-6256. S2CID 119379139.
  145. ^ Bond, Howard E.; Jencson, Jacob E.; Whitelock, Patricia A.; Adams, Scott M.; Bally, John; Cody, Ann Marie; Gehrz, Robert D.; Kasliwal, Mansi M.; Masci, Frank J. (April 2022). "Hubble Space Telescope Imaging of Luminous Extragalactic Infrared Transients and Variables from the Spitzer Infrared Intensive Transients Survey*". The Astrophysical Journal. 928 (2): 158. arXiv:2202.11040. Bibcode:2022ApJ...928..158B. doi:10.3847/1538-4357/ac5832. ISSN 0004-637X.
  146. Zachary, Gazak J.; Kudritzki, Rolf; Evans, Chris; Patrick, Lee; Davies, Ben; Bergemann, Maria; Plez, Bertand; Bresolin, Fabio; Bender, Ralf; Wegner, Michael; Bonanos, Alceste Z.; Williams, Stephen J. (2 June 2015). "Red Supergiants as Cosmic Abundance Probes: The Sculptor Galaxy NGC 300". The Astrophysical Journal. 805 (2): 9. arXiv:1505.00871. Bibcode:2015ApJ...805..182G. doi:10.1088/0004-637X/805/2/182. ISSN 0004-637X. S2CID 14681047.
  147. Petit, V.; Drissen, L.; Crowther, P. A. (2005). "Quantitative analysis of STIS spectra of NGC 2363-V1". The Fate of the Most Massive Stars. 332: 159. Bibcode:2005ASPC..332..157P.
  148. Ilie, Cosmin; Paulin, Jillian; Freese, Katherine (25 July 2023). "Supermassive Dark Star candidates seen by JWST". Proceedings of the National Academy of Sciences. 120 (30): e2305762120. arXiv:2304.01173. Bibcode:2023PNAS..12005762I. doi:10.1073/pnas.2305762120. ISSN 0027-8424. PMC 10372643. PMID 37433001.
  149. Ball, Warrick H.; Tout, Christopher A.; Żytkow, Anna N.; Eldridge, John J. (1 July 2011). "The structure and evolution of quasi-stars: The structure and evolution of quasi-stars". Monthly Notices of the Royal Astronomical Society. 414 (3): 2751–2762. arXiv:1102.5098. doi:10.1111/j.1365-2966.2011.18591.x. S2CID 119239346.
  150. Diego, J. M.; et al. (2023). "JWST's PEARLS: A new lens model for ACT-CL J0102−4915, "El Gordo," and the first red supergiant star at cosmological distances discovered by JWST". Astronomy & Astrophysics. 672: A3. arXiv:2210.06514. Bibcode:2023A&A...672A...3D. doi:10.1051/0004-6361/202245238. S2CID 252873244.
  151. ^ Diego, J. M.; Pascale, M.; Kavanagh, B. J.; Kelly, P.; Dai, L.; Frye, B.; Broadhurst, T. (September 2022). "Godzilla, a monster lurks in the Sunburst galaxy". Astronomy & Astrophysics. 665: A134. arXiv:2203.08158. Bibcode:2022A&A...665A.134D. doi:10.1051/0004-6361/202243605. ISSN 0004-6361. S2CID 247476158.
  152. "Scientists face down 'Godzilla', the most luminous star known". Nature. 610 (7930): 10. 6 October 2022. Bibcode:2022Natur.610T..10.. doi:10.1038/d41586-022-03054-3. ISSN 0028-0836.
  153. Diego, J. M.; Sun, Bangzheng; Yan, Haojing; Furtak, Lukas J.; Zackrisson, Erik; Dai, Liang; Kelly, Patrick; Nonino, Mario; Adams, Nathan; Meena, Ashish K.; Willner, S. P.; Zitrin, Adi; Cohen, Seth H.; D'Silva, Jordan C. J.; Jansen, Rolf A. (19 September 2023). "JWST's PEARLS: Mothra, a new kaiju star at z=2.091 extremely magnified by MACS0416, and implications for dark matter models". Astronomy & Astrophysics. 679: A31. arXiv:2307.10363. Bibcode:2023A&A...679A..31D. doi:10.1051/0004-6361/202347556. ISSN 0004-6361. S2CID 259991552.
  154. Pastorello, A.; Chen, T.-W.; Cai, Y.-Z.; Morales-Garoffolo, A.; Cano, Z.; Mason, E.; Barsukova, E. A.; Benetti, S.; Berton, M.; Bose, S.; Bufano, F.; Callis, E.; Cannizzaro, G.; Cartier, R.; Chen, Ping (May 2019). "The evolution of luminous red nova AT 2017jfs in NGC 4470". Astronomy & Astrophysics. 625: L8. arXiv:1906.00811. Bibcode:2019A&A...625L...8P. doi:10.1051/0004-6361/201935511. ISSN 0004-6361. S2CID 155703569.
  155. Elias-Rosa, N.; Benetti, S.; Cappellaro, E.; Pastorello, A.; Terreran, G.; Morales-Garoffolo, A; Howerton, S. C.; Valenti, S.; Kankare, E.; Drake, A. J.; Djorgovski, S. G.; Tomasella, L.; Tartaglia, L.; Kangas, T.; Ochner, P.; Filippenko, A. V.; Ciabattari, F.; Geier, S.; Howell, D. A.; Isern, J.; Leonini, S.; Pignata, J.; Turatto, M. (9 January 2018). "SNhunt151: an explosive event inside a dense cocoon". Monthly Notices of the Royal Astronomical Society. 475 (2): 2614–2631. arXiv:1801.03040. Bibcode:2018MNRAS.475.2614E. doi:10.1093/mnras/sty009. ISSN 0035-8711. S2CID 119519504.
  156. Elias-Rosa, N.; et al. (7 September 2016). "Dead or Alive? Long-term evolution of SN 2015bh (SNhunt275)". Monthly Notices of the Royal Astronomical Society. 463 (4): 3894–3920. arXiv:1606.09024. Bibcode:2016MNRAS.463.3894E. doi:10.1093/mnras/stw2253. ISSN 0035-8711. S2CID 119205955.
  157. Cai, Y. -Z.; et al. (3 December 2019). "The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon". Astronomy & Astrophysics. 631: 9. arXiv:1909.13147. Bibcode:2019A&A...632L...6C. doi:10.1051/0004-6361/201936749. ISSN 0004-6361. S2CID 203593575.
  158. Charalampopoulos, P.; et al. (22 January 2024). "The fast transient AT 2023clx in the nearby LINER galaxy NGC 3799 as a tidal disruption of a very low-mass star". Astronomy & Astrophysics. 689: A350. arXiv:2401.11773v2. Bibcode:2024A&A...689A.350C. doi:10.1051/0004-6361/202449296.
  159. Jencson, Jacob E.; Adams, Scott M.; Bond, Howard E.; van Dyk, Schuyler D.; Kasliwal, Mansi M.; Bally, John; Blagorodnova, Nadejda; De, Kishalay; Fremling, Christoffer; Yao, Yuhan; Fruchter, Andrew; Rubin, David; Barbarino, Cristina; Sollerman, Jesper; Miller, Adam A. (26 July 2019). "Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor". The Astrophysical Journal. 880 (2): L20. arXiv:1904.07857. Bibcode:2019ApJ...880L..20J. doi:10.3847/2041-8213/ab2c05. ISSN 2041-8213.
  160. Smith, Nathan; Frew, David J. (2011). "A revised historical light curve of Eta Carinae and the timing of close periastron encounters". Monthly Notices of the Royal Astronomical Society. 415 (3): 2009–2019. arXiv:1010.3719. Bibcode:2011MNRAS.415.2009S. doi:10.1111/j.1365-2966.2011.18993.x. S2CID 118614725.
  161. ^ Cai Y. -Z.; et al. (27 October 2021). "Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions". Astronomy & Astrophysics. 654: 30. arXiv:2108.05087. Bibcode:2021A&A...654A.157C. doi:10.1051/0004-6361/202141078. ISSN 0004-6361. S2CID 236976052.
  162. Pessi, Thallis; Prieto, Jose L.; Monard, Berto; Kochanek, Christopher S.; Bock, Greg; Drake, Andrew J.; Fox, Ori D.; Parker, Stuart; Stevance, Heloise F. (4 April 2022). "Unveiling the Nature of SN 2011fh: A Young and Massive Star Gives Rise to a Luminous SN 2009ip-like Event". The Astrophysical Journal. 928 (2): 21. arXiv:2110.09546. Bibcode:2022ApJ...928..138P. doi:10.3847/1538-4357/ac562d. ISSN 1538-4357. S2CID 239024685.
  163. ^ Soker, Noam; Kaplan, Noa (May 2021). "Explaining recently studied intermediate luminosity optical transients (ILOTs) with jet powering". Research in Astronomy and Astrophysics. 21 (4): 9. arXiv:2007.06472. Bibcode:2021RAA....21...90S. doi:10.1088/1674-4527/21/4/90. ISSN 1674-4527. S2CID 220496730.
  164. Stritzinger, M. D; et al. (22 July 2020). "The Carnegie Supernova Project II. Observations of the intermediate-luminosity red transient SNhunt120". Astronomy & Astrophysics. 639: 17. arXiv:2005.00319. Bibcode:2020A&A...639A.103S. doi:10.1051/0004-6361/202038018. ISSN 0004-6361. S2CID 249866047.
  165. Cai, Y. -Z; Pastorello, A.; Fraser, M.; Botticella, M. T.; Gall, C.; Arcavi, I.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Harmanen, J.; Hosseinzadeh, G.; Howell, D. A.; Isern, J.; Kangas, T.; Kankare, E.; Kuncarayakti, H.; Lundqvist, P.; Mattila, S.; McCully, C.; Reynolds, T. M.; Somero, A.; Stritzinger, M. D.; Terreran, G. (1 August 2018). "AT 2017be – a new member of the class of intermediate-luminosity red transients". Monthly Notices of the Royal Astronomical Society. 480 (3): 3424–3445. arXiv:1807.11676. Bibcode:2018MNRAS.480.3424C. doi:10.1093/mnras/sty2070. ISSN 0035-8711. S2CID 118946285.
  166. Allan, Andrew P; Groh, Jose H; Mehner, Andrea; Smith, Nathan; Boian, Ioana; Farrell, Eoin J; Andrews, Jennifer E (1 August 2020). "The possible disappearance of a massive star in the low-metallicity galaxy PHL 293B". Monthly Notices of the Royal Astronomical Society. 496 (2): 1902–1908. arXiv:2003.02242. doi:10.1093/mnras/staa1629. ISSN 0035-8711.
  167. Kankare, E.; Kotak, R.; Pastorello, A.; Fraser, M; Mattila, S.; Smartt, S. J.; Bruce, A.; Chambers, K. C.; Elias-Rosa, N.; Flewelling, H.; Fremling, C.; Harmanen, J.; Huber, M.; Jerkstand, A.; Kangas, T.; Kuncarayakti, H.; Magee, M.; Magnier, E.; Polshaw, J.; Smith, K. W.; Sollerman, J.; Tomasella, L. (7 September 2015). "On the triple peaks of SNHunt248 in NGC 5806". Astronomy & Astrophysics. 581: 7. arXiv:1508.04730. Bibcode:2015A&A...581L...4K. doi:10.1051/0004-6361/201526631. ISSN 0004-6361. S2CID 85321.
  168. Mehner, A.; Baade, D.; Rivinius, T.; Lennon, D. J.; Martayan, C.; Stahl, O.; Štefl, S. (July 2013). "Broad-band spectroscopy of the ongoing large eruption of the luminous blue variable R71". Astronomy & Astrophysics. 555: A116. arXiv:1303.1367. Bibcode:2013A&A...555A.116M. doi:10.1051/0004-6361/201321323. ISSN 0004-6361. S2CID 67775752.
  169. Aghakhanloo, Mojgan; Smith, Nathan; Milne, Peter; Andrews, Jennifer E.; Filippenko, Alexei V.; Jencson, Jacob E.; Sand, David J.; Van Dyk, Schuyler D.; Wyatt, Samuel; Zheng, WeiKang (28 February 2023). "Repeating periodic eruptions of the supernova impostor SN 2000ch". Monthly Notices of the Royal Astronomical Society. 521 (2): 1941–1957. arXiv:2212.00113. Bibcode:2023MNRAS.521.1941A. doi:10.1093/mnras/stad630. ISSN 0035-8711. S2CID 254125316.
  170. ^ Aghakhanloo, Mojgan; Smith, Nathan; Milne, Peter; Andrews, Jennifer E.; Van Dyck, Schuyler D.; Filippenko, Alexei V.; Jencson, Jacob E.; Lau, Ryan N.; Sand, David J.; Wyatt, Samuel; Zhang, WeiKang (7 September 2023). "Recurring outbursts of the supernova impostor AT 2016blu in NGC 4559". Monthly Notices of the Royal Astronomical Society. 526 (1): 456–472. arXiv:2212.09708. Bibcode:2023MNRAS.526..456A. doi:10.1093/mnras/stad2702. ISSN 0035-8711. S2CID 254854145.
  171. Salmaso, I.; Cappellaro, E.; Tartaglia, L.; Benetti, S.; Botticella, M. T.; Elias-Rosa, M.; Pastorello, A.; Patat, F.; Reguitti, A.; Tomasella, L.; Valerin, G.; Yang, S. (May 2023). "Hidden shock powering the peak of SN 2020faa". Astronomy & Astrophysics. 673: 14. arXiv:2302.12527. Bibcode:2023A&A...673A.127S. doi:10.1051/0004-6361/202245781. ISSN 0004-6361. S2CID 257205910.
  172. "Papers with Code - The Dusty and Extremely Red Progenitor of the Type II Supernova 2023ixf in Messier 101". astro.paperswithcode.com. Retrieved 25 November 2023.
  173. Qin, Y.; Zhang, Keming; Bloom, J.; Sollerman, J.; Zimmerman, E.; Irani, I.; Schulze, S.; Gal-yam, A.; Kasliwal, M.; Coughlin, M.; Perley, D.; Fremling, C.; Kulkarni, S. (2024). "The Progenitor Star of SN 2023ixf: A Massive Red Supergiant with Enhanced, Episodic Pre-Supernova Mass Loss". Monthly Notices of the Royal Astronomical Society. 534: 271–280. arXiv:2309.10022. doi:10.1093/mnras/stae2012. S2CID 262054068.
  174. Kilpatrick, Charles D.; et al. (29 June 2023). "EType II-P supernova progenitor star initial masses and SN 2020jfo: direct detection, light-curve properties, nebular spectroscopy, and local environment". Monthly Notices of the Royal Astronomical Society. 524 (2): 2161–2185. arXiv:2307.00550. Bibcode:2023MNRAS.524.2161K. doi:10.1093/mnras/stad1954. ISSN 0035-8711. S2CID 259306203.
  175. Shrestha, Manisha; et al. (2024). "Evidence of weak circumstellar medium interaction in the Type II SN 2023axu". The Astrophysical Journal. 961 (2): 247. arXiv:2310.00162. Bibcode:2024ApJ...961..247S. doi:10.3847/1538-4357/ad11e1.
  176. Yan, Shengyu; Wang, Xiaofeng; Gao, Xing; Zhang, Jujia; Brink, Thomas G.; Mo, Jun; Lin, Weili; Xiang, Danfeng; Ma, Xiaoran; Guo, Fangzhou; Tomasella, Lina; Benetti, Stefano; Cai, Yongzhi; Cappellaro, Enrico; Chen, Zhihao; Li, Zhitong; Pastorello, Andrea; Zhang, Tiangmeng (7 October 2023). "Discovery of the Closest Ultrastripped Supernova: SN 2021agco in UGC 3855". The Astrophysical Journal. 959 (2): L32. arXiv:2310.04827. Bibcode:2023ApJ...959L..32Y. doi:10.3847/2041-8213/ad0cc3.
  177. SIMBAD.
  178. Ohnaka, K.; Hofmann, K. -H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (1 July 2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy and Astrophysics. 555: A24. arXiv:1304.4800. Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063. ISSN 0004-6361.
  179. ^ van Leeuwen, F. (1 November 2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. ISSN 0004-6361.
  180. Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K. -H.; Ohnaka, K.; Richichi, A.; Schertl, D.; Schöller, M.; Scholz, M.; Weigelt, G.; Wittkowski, M.; Wood, P. R. (1 July 2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy and Astrophysics. 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826. ISSN 0004-6361.
  181. ^ Ramírez, I.; Allende Prieto, C. (1 December 2011). "Fundamental Parameters and Chemical Composition of Arcturus". The Astrophysical Journal. 743 (2): 135. arXiv:1109.4425. Bibcode:2011ApJ...743..135R. doi:10.1088/0004-637X/743/2/135. ISSN 0004-637X.
  182. ^ Wallstrom, S. H. J.; Danilovich, T.; Muller, H. S. P.; Gottlieb, C. A.; Maes, S.; Van de Sande, M.; Decin, L.; Richards, A. M. S.; Baudry, A.; Bolte, J.; Ceulemans, T.; De Ceuster, F.; de Koter, A.; Mellah, I. El; Esseldeurs, M. (6 December 2023). "ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA". Astronomy & Astrophysics. 681: A50. arXiv:2312.03467. doi:10.1051/0004-6361/202347632. ISSN 0004-6361.
  183. Soubiran, C.; Creevey, O. L.; Lagarde, N.; Brouillet, N.; Jofré, P.; Casamiquela, L.; Heiter, U.; Aguilera-Gómez, C.; Vitali, S.; Worley, C.; de Brito Silva, D. (1 February 2024). "Gaia FGK benchmark stars: Fundamental Teff and log g of the third version". Astronomy and Astrophysics. 682: A145. arXiv:2310.11302. Bibcode:2024A&A...682A.145S. doi:10.1051/0004-6361/202347136. ISSN 0004-6361. Note: See VizieR catalogue
  184. ^ Mozurkewich, D.; Armstrong, J. T.; Hindsley, R. B.; Quirrenbach, A.; Hummel, C. A.; Hutter, D. J.; Johnston, K. J.; Hajian, A. R.; Elias II, Nicholas M.; Buscher, D. F.; Simon, R. S. (November 2003). "Angular Diameters of Stars from the Mark III Optical Interferometer". The Astronomical Journal. 126 (5): 2502–2520. Bibcode:2003AJ....126.2502M. doi:10.1086/378596. ISSN 0004-6256.
  185. Gatewood, George (1 July 2008). "Astrometric Studies of Aldebaran, Arcturus, Vega, the Hyades, and Other Regions". The Astronomical Journal. 136 (1): 452–460. Bibcode:2008AJ....136..452G. doi:10.1088/0004-6256/136/1/452. ISSN 0004-6256.
  186. ^ Bailer-Jones, C. A. L.; Rybizki, J.; Fouesneau, M.; Demleitner, M.; Andrae, R. (2021). "Estimating Distances from Parallaxes. V. Geometric and Photogeometric Distances to 1.47 Billion Stars in Gaia Early Data Release 3". The Astronomical Journal. 161 (3): 147. arXiv:2012.05220. Bibcode:2021AJ....161..147B. doi:10.3847/1538-3881/abd806. S2CID 228063812. Data about this star can be seen here.
  187. Arroyo-Torres, B.; et al. (June 2014). "VLTI/AMBER observations of cold giant stars: atmospheric structures and fundamental parameters". Astronomy & Astrophysics. 566: 11. arXiv:1404.7384. Bibcode:2014A&A...566A..88A. doi:10.1051/0004-6361/201323264. S2CID 16778588. A88.
  188. ^ Richichi, A.; Percheron, I.; Khristoforova, M. (1 February 2005). "CHARM2: An updated Catalog of High Angular Resolution Measurements". Astronomy and Astrophysics. 431 (2): 773–777. Bibcode:2005A&A...431..773R. doi:10.1051/0004-6361:20042039. ISSN 0004-6361.
  189. Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  190. Min, Cheulhong; Matsumoto, Naoko; Kim, Mi Kyoung; Hirota, Tomoya; Shibata, Katsunori M.; Cho, Se-Hyung; Shizugami, Makoto; Honma, Mareki (1 April 2014). "Accurate Parallax Measurement toward the Symbiotic Star R Aquarii". Publications of the Astronomical Society of Japan. 66 (2): 38. arXiv:1401.5574. doi:10.1093/pasj/psu003. ISSN 2053-051X.
  191. Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  192. Perrin, G.; Ridgway, S. T.; Verhoelst, T.; Schuller, P. A.; Traub, W. A.; Millan-Gabet, R.; Lacasse, M. G. (1 June 2005). "Study of molecular layers in the atmosphere of the supergiant star μ Cep by interferometry in the K band". Astronomy & Astrophysics. 436 (1): 317–324. arXiv:astro-ph/0502415. Bibcode:2005A&A...436..317P. doi:10.1051/0004-6361:20042313. ISSN 0004-6361.
  193. Davies, Ben; Beasor, Emma R. (2020). "The 'red supergiant problem': The upper luminosity boundary of Type II supernova progenitors". Monthly Notices of the Royal Astronomical Society. 493: 468–476. arXiv:2001.06020. doi:10.1093/mnras/staa174. Retrieved 3 October 2024.
  194. "HD 6860 Overview". NASA Exoplanet Archive. Retrieved 7 June 2024.
  195. Wittkowski, M.; et al. (December 2006), "Tests of stellar model atmospheres by optical interferometry. IV. VINCI interferometry and UVES spectroscopy of Menkar", Astronomy and Astrophysics, 460 (3): 855–864, arXiv:astro-ph/0610150, Bibcode:2006A&A...460..855W, doi:10.1051/0004-6361:20066032, S2CID 16525827

Cite error: A list-defined reference named "SAGEIII" is not used in the content (see the help page).

Cite error: A list-defined reference named "El-Badry2024" is not used in the content (see the help page).

External links

Stars
Formation
Evolution
Classification
Remnants
Hypothetical
Nucleosynthesis
Structure
Properties
Star systems
Earth-centric
observations
Lists
Related
Portals: Categories:
List of largest stars: Difference between revisions Add topic