Misplaced Pages

Ethylene oxide: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 10:04, 29 May 2005 editPhyschim62 (talk | contribs)Autopatrolled, Extended confirmed users, Pending changes reviewers33,631 editsm cat:Organic compounds + fixed ext link← Previous edit Revision as of 09:09, 18 July 2005 edit undoRobotE (talk | contribs)15,723 editsm robot Adding: nlNext edit →
Line 162: Line 162:


] ]
]

Revision as of 09:09, 18 July 2005

Properties

General

Name Epoxyethane

Ethylene oxide structure

Chemical formula C2H4O
Formula weight 44.05 amu
Synonyms Ethylene oxide, dimethylene oxide, oxirane
CAS number 75-21-8
UN number 1040

Phase behavior

Melting point 161 K (-112.1°C)
Boiling point 283.5 K (10.4°C)
Thermal decomposition ? K (?°C)
Triple point 160.6 K (-112.4°C)
? bar
Critical point 468.9 K (195.9°C)
72.3 bar
ΔfusH 5.17 kJ/mol
ΔfusS 32.2 J/mol·K
ΔvapH 25.5 kJ/mol
Solubility Miscible with water.

Liquid properties

ΔfHliquid -96 kJ/mol
Sliquid 149.45 J/mol·K
Cp 86.9 J/mol·K
Density 0.899 ×10 kg/m

Gas properties

ΔfHgas -52.6 kJ/mol
Sgas 243 J/mol·K
Cp 47 J/mol·K

Safety

Acute effects Lung irritation, convulsions.
Chronic effects CNS damage. Potential carcinogen.
Flash point -55°C
Autoignition temperature 429°C
Explosive limits 3-100%

More info

Properties NIST WebBook
MSDS Hazardous Chemical Database

SI units were used where possible. Unless otherwise stated, standard conditions were used.

Disclaimer and references

The chemical compound ethylene oxide is an important industrial chemical used as an intermediate in the production of ethylene glycol and other chemicals, and as a sterilant for foodstuffs and medical supplies. It is a colorless flammable gas or refrigerated liquid with a faintly sweet odor.

Its IUPAC name is 1,2-epoxyethane. Other names for it include oxirane and dimethylene oxide.

History

Ethylene oxide was first prepared in 1859 by the French chemist Charles Wurtz, who prepared it by treating 2-chloroethanol with a base. It achieved industrial importance during World War I as a precursor to both the coolant ethylene glycol and the chemical weapon mustard gas. In 1931, Theodore Lefort, another French chemist, discovered a means to prepare ethylene oxide directly from ethylene and oxygen, using silver as a catalyst. Since 1940, almost all ethylene oxide produced industrially has been made using this method.

Production

Industrially, ethylene oxide is produced when ethylene and oxygen react on a silver catalyst at 200-300°C. The chemical equation for this reaction is

CH2=CH2 + ½ O2 → C2H4O

The typical yield for this reaction is 70-80%, the major side reaction being combustion of ethylene to produce carbon dioxide. Several methods to produce ethylene oxide more selectively have been proposed, but none have achieved industrial importance.

Uses

Ethylene oxide gas kills bacteria, mold, and fungi, and can therefore be used to sterilize substances that would be damaged by sterilizing techniques such as pasteurization that rely on heat. Ethylene oxide sterilization for the preservation of spices was patented in 1938 by the American chemist Lloyd Hall, and it is still used in that role. Additionally, ethylene oxide is widely used to sterilize medical supplies such as bandages, sutures, and surgical implements.

Most ethylene oxide, however, is used as an intermediate in the production of other chemicals. The major use of ethylene oxide is in the production of ethylene glycol, which is widely used as an automotive coolant and antifreeze, and is also used to produce polyester polymers.

Ethylene oxide itself can be polymerized to form polyethylene glycol or polyethylene oxide, which are useful as non-toxic, water-soluble polymers. Ethylene oxide is also important in the manufacture of surfactants and other detergents, in a process called ethoxylation.

One class of ethylene oxide derivatives that has attracted much scientific attention is the crown ethers, which are cyclic oligomers of ethylene oxide. These compounds have the ability to make ionic compounds such as salts soluble in nonpolar solvents which they otherwise could not dissolve in. However, the high cost of these compounds has largely confined their use to the laboratory rather than industrial practice.

Health effects

Ethylene oxide is toxic by inhalation. Symptoms of overexposure include headache and dizziness, progressing with increasing exposure to convulsions, seizure and coma. It is also an irritant to skin and the respiratory tract, and inhaling the vapors may cause the lungs to fill with fluid several hours after exposure.

Ethylene oxide is usually stored as a pressurized or refrigerated liquid. At room temperature and pressure, it rapidly evaporates, potentially causing frostbite in cases of skin exposure.

Laboratory animals exposed to ethylene oxide for their entire lives have had a higher incidence of liver cancer. However, studies on human beings who have worked with ethylene oxide for extended periods and may have experienced low doses during that time have found no increase in cancer risk. Chronic ethylene oxide exposure may increase the risk of cataracts in humans.

In animals, ethylene oxide can cause numerous reproductive effects, including mutations and a higher rate of miscarriages. Its reproductive effects on humans have not been well studied, but it is considered probable that ethylene oxide exposure has similar effects on human reproduction.

Category:
Ethylene oxide: Difference between revisions Add topic