Misplaced Pages

Centrifugal force (rotating reference frame): Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 01:09, 4 May 2008 editWolfkeeper (talk | contribs)31,832 editsmNo edit summary← Previous edit Revision as of 03:55, 4 May 2008 edit undoFDT (talk | contribs)7,708 edits There are no actual effects that these equations cover, that are not induced by actual rotationNext edit →
Line 14: Line 14:
Sometimes it is convenient to use a rotating reference frame rather than an ]. In such cases, coordinate transformations from the inertial reference frame can be applied. The ] in the rotating reference frame includes a centrifugal force and a ]. The centrifugal force depends only on the position and mass of the object it applies to (and does not depend on its velocity), whereas the Coriolis force depends on the velocity and mass of the object but is independent of its position. Sometimes it is convenient to use a rotating reference frame rather than an ]. In such cases, coordinate transformations from the inertial reference frame can be applied. The ] in the rotating reference frame includes a centrifugal force and a ]. The centrifugal force depends only on the position and mass of the object it applies to (and does not depend on its velocity), whereas the Coriolis force depends on the velocity and mass of the object but is independent of its position.


Both these forces are "fictitious" in the sense that in every case the physical effects ascribed to them can be equally well described within an inertial frame without considering them; their presence in the equations of motion for a rotating system is merely an artifact of applying the coordinate transformation from the inertial to the rotating frame to the conventional ] as represented within the inertial frame. The results obtained by considering these pseudo-forces to be "real" within the rotating frame are identical to those given by calculations made in the inertial frame without them. Both these forces are "fictitious" in the sense that the physical effects ascribed to them, which are induced by actual rotational motion, can be equally well described within an inertial frame without considering them; their presence in the equations of motion for a rotating system is merely an artifact of applying the coordinate transformation from the inertial to the rotating frame to the conventional ] as represented within the inertial frame. The results obtained by considering these pseudo-forces to be "real" within the rotating frame are identical to those given by calculations made in the inertial frame without them.


The term "centrifugal force" is sometimes also used in everyday discussions to refer to any force pushing away from a center; this article only discusses the centrifugal force which appears in rotating reference frames. The term "centrifugal force" is sometimes also used in everyday discussions to refer to any force pushing away from a center; this article only discusses the centrifugal force which appears in rotating reference frames.

Revision as of 03:55, 4 May 2008

This article needs attention from an expert in Physics. Please add a reason or a talk parameter to this template to explain the issue with the article. WikiProject Physics may be able to help recruit an expert.
It has been suggested that Reactive centrifugal force be merged into this article. (Discuss) Proposed since May 2008.
For the real outward-acting force that can be found in circular motion see Reactive centrifugal force

In physics, centrifugal force (from Latin centrum "center" and fugere "to flee") is a fictitious force (also known as a pseudoforce or d'Alembert force) which is apparent in a rotating reference frame and applies to anything with mass considered in such a frame. This type of inertial force is oriented away from the axis of rotation of the reference frame.

Sometimes it is convenient to use a rotating reference frame rather than an inertial reference frame. In such cases, coordinate transformations from the inertial reference frame can be applied. The equation of motion in the rotating reference frame includes a centrifugal force and a Coriolis force. The centrifugal force depends only on the position and mass of the object it applies to (and does not depend on its velocity), whereas the Coriolis force depends on the velocity and mass of the object but is independent of its position.

Both these forces are "fictitious" in the sense that the physical effects ascribed to them, which are induced by actual rotational motion, can be equally well described within an inertial frame without considering them; their presence in the equations of motion for a rotating system is merely an artifact of applying the coordinate transformation from the inertial to the rotating frame to the conventional Newtonian equations of motion as represented within the inertial frame. The results obtained by considering these pseudo-forces to be "real" within the rotating frame are identical to those given by calculations made in the inertial frame without them.

The term "centrifugal force" is sometimes also used in everyday discussions to refer to any force pushing away from a center; this article only discusses the centrifugal force which appears in rotating reference frames.

Rotating reference frames

Rotating reference frames are sometimes used in physics, mechanics or meteorology where they are the most convenient frame to use. For example the surface of the Earth is only stationary in a reference frame that rotates once per day. For many purposes the rotation causes negligible effects, but for some phenomena such as weather systems this rotation cannot be ignored.

In the classical approach, the inertial frame remains the true reference for the laws of mechanics and analysis. When using a rotating reference frame, the laws of physics are coordinate mapped from the most convenient inertial frame to a rotating frame. Assuming a constant rotation speed, this is achieved by adding to every object two coordinate accelerations which correct for the constant rotation of the coordinate axes.

a r o t {\displaystyle \mathbf {a} _{\mathrm {rot} }\,} = a 2 ω × v ω × ( ω × r ) {\displaystyle =\mathbf {a} -2\mathbf {\omega \times v} -\mathbf {\omega \times (\omega \times r)} \,}
= a + a c o r i o l i s + a c e n t r i f u g a l {\displaystyle =\mathbf {a+a_{\mathrm {coriolis} }+a_{\mathrm {centrifugal} }} \,}

where a r o t {\displaystyle \mathbf {a} _{\mathrm {rot} }\,} is the frame acceleration relative to the rotating frame, a {\displaystyle \mathbf {a} \,} is the acceleration relative to the inertial frame, ω {\displaystyle \mathbf {\omega } \,} is the angular velocity vector describing the rotation of the reference frame, v {\displaystyle \mathbf {v} \,} is the velocity of the body relative to the rotating frame, and r {\displaystyle \mathbf {r} \,} is the position vector of a point on the body. A derivation can be found in the article fictitious force.

The last term is the centrifugal acceleration, so we have:

a centrifugal = ω × ( ω × r ) = ω 2 r {\displaystyle \mathbf {a} _{\textrm {centrifugal}}=-\mathbf {\omega \times (\omega \times r)} =\omega ^{2}\mathbf {r} _{\perp }}

where r {\displaystyle \mathbf {r_{\perp }} } is the component of r {\displaystyle \mathbf {r} \,} perpendicular to the axis of rotation.

Fictitious forces

Main article: Fictitious force

An alternative way of dealing with a rotating frame of reference is to make Newton's laws of motion artificially valid by adding pseudo forces to be the cause of the above acceleration terms. In particular, the centrifugal acceleration is added to the motion of every object, and attributed to a centrifugal force, given by:

F c e n t r i f u g a l {\displaystyle \mathbf {F} _{\mathrm {centrifugal} }\,} = m a c e n t r i f u g a l {\displaystyle =m\mathbf {a} _{\mathrm {centrifugal} }\,}
= m ω 2 r {\displaystyle =m\omega ^{2}\mathbf {r} _{\perp }\,}

where m {\displaystyle m\,} is the mass of the object.

This pseudo or fictitious centrifugal force is a sufficient correction to Newton's second law only if the body is stationary in the rotating frame. For bodies that move with respect to the rotating frame it must be supplemented with a second pseudo force, the "Coriolis force":

F c o r i o l i s = 2 m ω × v {\displaystyle \mathbf {F} _{\mathrm {coriolis} }=-2\,m\,{\vec {\omega }}\times {\vec {v}}}

For example, a body that is stationary relative to the non-rotating frame, will be rotating when viewed from the rotating frame. The centripetal force of m ω 2 r {\displaystyle -m\omega ^{2}\mathbf {r} _{\perp }} required to account for this apparent rotation is the sum of the centrifugal pseudo force ( m ω 2 r {\displaystyle m\omega ^{2}\mathbf {r} _{\perp }} ) and the Coriolis force ( 2 m ω × v = 2 m ω 2 r {\displaystyle -2m\mathbf {\omega \times v} =-2m\omega ^{2}\mathbf {r} _{\perp }} ). Since this centripetal force includes contributions from only pseudo forces, it has no reactive counterpart.

Potential energy

The interface of two immiscible liquids rotating around a vertical axis is an upward-opening circular paraboloid.

The fictitious centrifugal force is conservative and has a potential energy of the form

E p = 1 2 m ω 2 r 2 {\displaystyle E_{p}=-{\frac {1}{2}}m\omega ^{2}r_{\perp }^{2}}

This is useful, for example, in calculating the form of the water surface h ( r ) {\displaystyle h(r)\,} in a rotating bucket: requiring the potential energy per unit mass on the surface g h ( r ) 1 2 ω 2 r 2 {\displaystyle gh(r)-{\frac {1}{2}}\omega ^{2}r^{2}\,} to be constant, we obtain the parabolic form h ( r ) = ω 2 2 g r 2 + C {\displaystyle h(r)={\frac {\omega ^{2}}{2g}}r^{2}+C} (where C {\displaystyle C} is a constant).

Similarly, the potential energy of the centrifugal force is often used in the calculation of the height of the tides on the Earth (where the centrifugal force is included to account for the rotation of the Earth around the Earth-Moon center of mass).

The principle of operation of the centrifuge also can be simply understood in terms of this expression for the potential energy, which shows that it is favorable energetically when the volume far from the axis of rotation is occupied by the heavier substance.

The coriolis force has no equivalent potential, as it acts perpendicular to the velocity vector and hence rotates the direction of motion, but does not change the energy of a body.

Confusion and misconceptions

One can often avoid dealing with pseudo forces entirely by analyzing systems using inertial frames of reference for the physics; and when convenient, one simply maps to a rotating frame without forgetting about the frame rotation, as shown above. Such is standard practice in mechanics textbooks.

Although centrifugal force is often described as 'fictitious', it isn't imaginary in the sense that Sherlock Holmes is fiction with no relation to reality. Centrifugal force gives physically very real effects, ultimately the centrifugal and Coriolis effects are behaviours which are due to inertia. Some writers, notably Richard Feynman preferred to use the term 'pseudo force' which has connotations of pretense rather than outright fiction.

Because rotating frames are not vital for understanding mechanics, they are often not discussed in science education. Therefore teachers who need to impress on their students that centrifugal forces have no place in their calculations often do not have occasion to give a matching emphasis to the fact that a centrifugal force does occur in a rotating frame. As a result, even students who master the physics curriculum may leave school with the false impression that it is never scientifically valid to speak about centrifugal forces. Nevertheless, many popular discussions of forces do use the term "centrifugal", without pointing out that it is fictitious, and assume the reader is knowledgeable of the true inertial character of the force, leading to misconceptions and bad use of the term.

Applications

  • A centrifugal governor regulates the speed of an engine by using spinning masses that move radially, adjusting the throttle, as the engine changes speed. In the reference frame of the spinning masses, centrifugal force causes the radial movement.
  • A centrifugal clutch is used in small engine-powered devices such as chain saws, go-karts and model helicopters. It allows the engine to start and idle without driving the device but automatically and smoothly engages the drive as the engine speed rises.
  • Centrifugal forces can be used to generate artificial gravity, as in proposed designs for rotating space stations. The Mars Gravity Biosatellite will study the effects of Mars-level gravity on mice with gravity simulated in this way.
  • Centrifuges are used in science and industry to separate substances. In the reference frame spinning with the centrifuge, the centrifugal force induces a hydrostatic pressure gradient in fluid-filled tubes oriented perpendicular to the axis of rotation, giving rise to large buoyant forces which push low-density particles inward. Elements or particles denser than the fluid move outward under the influence of the centrifugal force. This is effectively Archimedes' principle as generated by centrifugal force as opposed to being generated by gravity.
  • Some amusement park rides make use of centrifugal forces. For instance, a Gravitron’s spin forces riders against a wall and allows riders to be elevated above the machine’s floor in defiance of Earth’s gravity.
  • Spin casting and centrifugal casting are production methods that uses centrifugal force to disperse liquid metal or plastic throughout the negative space of a mold.

See also

References

  1. "Centrifugal Force".
  2. "Centrifugal Force - Britannica online encyclopedia".
  3. R.P.Feynman et al. (1963), The Feynman Lectures on Physics, vol. I, section 12-5
  4. Seligman, Courtney. "Fictitious Forces". Retrieved 2007-09-03.
  5. (23) Accelerated Frames of Reference: Inertial Forces

External links

Categories:
Centrifugal force (rotating reference frame): Difference between revisions Add topic