Revision as of 12:21, 4 August 2009 editWejer (talk | contribs)223 edits The law of noncontradiction is by nature an axiom - it cannot be logically disproven because it forms the basis of logic itself, ie you cant defeat the base of logic using logic itself as your weapon← Previous edit | Revision as of 13:05, 4 August 2009 edit undoWejer (talk | contribs)223 editsm →ReferencesNext edit → | ||
Line 49: | Line 49: | ||
== References == | == References == | ||
*''Aristotle's Metaphysics'' translated with an introduction by H. Lawson-Tancred. Penguin 1998 | *''Aristotle's Metaphysics'' translated with an introduction by H. Lawson-Tancred. Penguin 1998 | ||
*{{Wikisource1911Enc Citation|Principle of Contradiction}} | *{{Wikisource1911Enc Citation|Principle of Contradiction}} '''(dead link)''' | ||
==External links== | ==External links== |
Revision as of 13:05, 4 August 2009
In logic, the Principle of contradiction (principium contradictionis in Latin) is the second of the so-called three classic laws of thought. The oldest statement of the law is that contradictory statements cannot both at the same time be true, e.g. the two propositions A is B and A is not B are mutually exclusive. A may be B at one time, and not at another; A may be partly B and partly not B at the same time; but it is impossible to predicate of the same thing, at the same time, and in the same sense, the absence and the presence of the same quality. This is the statement of the law given by Aristotle. It takes no account of the truth of either proposition; if one is true, the other is not; one of the two must be true.
In the symbolism of propositional logic, the principle is expressed as:
Interpretations
According to Allan Bloom, "the earliest-known explicit statement of the principle of contradiction — the premise of philosophy and the foundation of rational discourse" — is given in Plato's Politeia (The Republic) where the character Socrates states, "It's plain that the same thing won't be willing at the same time to do or suffer opposites with respect to the same part and in relation to the same thing" (436B).
The principle is also found in ancient Indian logic as a meta-rule in the Shrauta Sutras, the grammar of Pāṇini, and the Brahma Sutras attributed to Vyasa. It was later elaborated on by medieval commentators such as Madhvacharya.
The law of non-contradiction is often used as a test of "absolute truth." For example, Christianity, and other religions, are based on the belief there is one true God of the universe. Other religious beliefs may claim that truth is relativistic. The defenders of the Principle of Contradiction would argue that in order for the statement "there is no absolute truth" to be true, absolute must be true, thus making the statement self-refuting.
Aristotle's attempt at proof
In chapter 4, book IV of the Metaphysics, Aristotle attempts several proofs of this principle. He first argues that every expression has a single meaning (otherwise we could not communicate with one another). This rules out the possibility that by 'to be a man', 'not to be a man' is meant. But 'man' means 'two-footed animal' (for example), and so if anything is a man, it is necessary (by virtue of the meaning of 'man') that it must be a two-footed animal, and so it is impossible at the same time for it not to be a two-footed animal. Thus '"it is not possible to say truly at the same time that the same thing is and is not a man" (Metaphysics 1006b 35). Another argument is that anyone who believes something cannot believe its contradiction (1008b). Why should someone walk to Megara, rather than merely "twiddle his toes"?
- Why does he not just get up first thing and walk into a well or, if he finds one, over a cliff? In fact, he seems rather careful about cliffs and wells .
Avicenna gives a similar argument:
- Anyone who denies the law of non-contradiction should be beaten and burned until he admits that to be beaten is not the same as not to be beaten, and to be burned is not the same as not to be burned.
Leibniz and Kant
Leibniz and Kant adopted a different statement, by which the law assumes an essentially different meaning. Their formula is A is not not-A; in other words it is impossible to predicate of a thing a quality which is its contradictory. Unlike Aristotle's law this law deals with the necessary relation between subject and predicate in a single judgment. For example, in Gottlob Ernst Schulze's Aenesidemus, it is asserted, "… nothing supposed capable of being thought may contain contradictory characteristics." Whereas Aristotle states that one or other of two contradictory propositions must be false, the Kantian law states that a particular kind of proposition is in itself necessarily false. On the other hand there is a real connection between the two laws. The denial of the statement A is not-A presupposes some knowledge of what A is, i.e. the statement A is A. In other words a judgment about A is implied.
Kant's analytical judgments of propositions depend on presupposed concepts which are the same for all people. His statement, regarded as a logical principle purely and apart from material facts, does not therefore amount to more than that of Aristotle, which deals simply with the significance of negation.
Alleged impossibility of its proof or denial
As is true of all axioms, the law of non-contradiction is alleged to be neither verifiable nor falsifiable, on the grounds that any proof or disproof must use the law itself prior to reaching the conclusion. In other words, in order to verify or falsify the laws of logic one must resort to logic as a weapon, an act which would essentially be self-defeating. Since the early 20th century, certain logicians have proposed logics that denies the validity of the law. Collectively, these logics are known as "paraconsistent" or "inconsistency-tolerant" logics. Graham Priest advances the strongest thesis of this sort, which he calls "dialetheism".
In several axiomatic derivations of logic, this is effectively resolved by showing that (P ∨ ¬P) and its negation are constants, and simply defining TRUE as (P ∨ ¬P) and FALSE as ¬(P ∨ ¬P), without taking a position as to the Principle of bivalence or Law of excluded middle.
See also
- Contradiction
- First principle
- Identity (philosophy)
- Law of excluded middle
- Law of identity
- Laws of thought
- Peirce's law
- Principle of bivalence
- Principle of explosion
- Reductio ad absurdum
- Oxymoron
Notes
- Frits Staal (1988), Universals: Studies in Indian Logic and Linguistics, Chicago, pp. 109–28 (cf. Bull, Malcolm (1999), Seeing Things Hidden, Verso, p. 53, ISBN 1859842631)
- Dasgupta, Surendranath (1991), A History of Indian Philosophy, Motilal Banarsidass, p. 110, ISBN 8120804155
- 1008b, trans. Lawson-Tancred
- Avicenna, Metaphysics, I; commenting on Aristotle, Topics I.11.105a4–5.
- Steven Wolfram, A New Kind Of Science, ISBN 1579550088
References
- Aristotle's Metaphysics translated with an introduction by H. Lawson-Tancred. Penguin 1998
- Chisholm, Hugh, ed. (1911). Encyclopædia Britannica (11th ed.). Cambridge University Press.
{{cite encyclopedia}}
: Missing or empty|title=
(help) (dead link)
External links
- Laurence Horn, "Contradiction" (Stanford Encyclopedia of Philosophy)
- Graham Priest, "Dialetheism" (Stanford Encyclopedia of Philosophy)
- Graham Priest and Koji Tanaka, "Paraconsistent logic" (Stanford Encyclopedia of Philosophy)