Misplaced Pages

E (mathematical constant): Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 23:51, 21 February 2003 editMichael Hardy (talk | contribs)Administrators210,287 edits In TeX, "sin" and "cos" should be preceeded by backslashes.← Previous edit Revision as of 00:16, 30 March 2003 edit undoAndre Engels (talk | contribs)Extended confirmed users, Pending changes reviewers20,762 editsm nl:Next edit →
Line 1: Line 1:
] ]]


The constant <math>e</math> (occasionally called ''Napier's constant'' in honor of the Scottish mathematician ] who introduced logarithms) is the base of the ]. It is approximately equal to The constant <math>e</math> (occasionally called ''Napier's constant'' in honor of the Scottish mathematician ] who introduced logarithms) is the base of the ]. It is approximately equal to

Revision as of 00:16, 30 March 2003


The constant e {\displaystyle e} (occasionally called Napier's constant in honor of the Scottish mathematician John Napier who introduced logarithms) is the base of the natural logarithm. It is approximately equal to

e = 2.71828 18284 59045 23536 02874 .....

It is equal to exp(1) where exp is the exponential function and therefore it is the limit of ( 1 + 1 / n ) n {\displaystyle (1+1/n)^{n}} as n {\displaystyle n} goes to infinity and can also be written as the infinite series

e = 1 0 ! + 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! + {\displaystyle e={1 \over 0!}+{1 \over 1!}+{1 \over 2!}+{1 \over 3!}+{1 \over 4!}+\cdots }

Here n ! {\displaystyle n!} stands for the factorial of n {\displaystyle n} .

The infinite continued fraction expansion of e {\displaystyle e} contains an interesting pattern as follows:

e = [ 2 ; 1 , 2 , 1 , 1 , 4 , 1 , 1 , 6 , 1 , 1 , 8 , 1 , 1 , 10 , ] . {\displaystyle e=.}

The number e is relevant because one can show that the exponential function exp(x) can be written as e x {\displaystyle e^{x}} ; the exponential function is important because it is, up to multiplication by a scalar, the unique function which is its own derivative and is hence commonly used to model growth or decay processes.

The number e is known to be irrational and even transcendental. It features (along with a few other fundamental constants) in Euler's identity:

e i π + 1 = 0 {\displaystyle e^{i\pi }+1=0}

which is regarded by some mathematicians as The most remarkable formula in the world! Two other closely related important identities involving e are:

cos ( x ) = e i x + e i x 2 {\displaystyle \cos(x)={\frac {e^{ix}+e^{-ix}}{2}}}

and

sin ( x ) = e i x e i x 2 i . {\displaystyle \sin(x)={\frac {e^{ix}-e^{-ix}}{2i}}.}