Misplaced Pages

Invention of the telephone

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 69.171.157.144 (talk) at 20:31, 22 May 2010 (Make and break transmitters and electro-magnetic receivers). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 20:31, 22 May 2010 by 69.171.157.144 (talk) (Make and break transmitters and electro-magnetic receivers)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Bell speaking into a prototype model of the telephone

The modern telephone is the culmination of work done by many individuals. Alexander Graham Bell was the first to patent the telephone, an "apparatus for transmitting vocal or other sounds telegraphically", after experimenting with many primitive sound transmitters and receivers. However, the history of the invention of the telephone is a confusing collection of claims and counterclaims, made no less confusing by the many lawsuits which attempted to resolve the patent claims of several individuals. Speaking tubes remained common and can still be found today in a variety of locations, including ships.

The string or "lover's" telephone has also been known for centuries, comprising two diaphragms connected by a taut string or wire. Sound waves are carried as vibrations along the string or wire from one diaphragm to the other. The classic example is the tin can telephone, a children's toy made by connecting the two ends of a string to the bottoms of two metal cans, paper cups or similar items.

Simon was here!!

Electro-magnetic transmitters and receivers

Elisha Gray

Main article: Elisha Gray, See also: Elisha Gray and Alexander Bell telephone controversy

Elisha Gray, of Highland Park, Illinois (near Chicago) also devised a tone telegraph of this kind about the same time as La Cour. In Gray's tone telegraph, several vibrating steel reeds tuned to different frequencies interrupted the current, which at the other end of the line passed through electromagnets and vibrated matching tuned steel reeds near the electromagnet poles. Gray's 'harmonic telegraph,' with vibrating reeds, was used by the Western Union Telegraph Company. Since more than one set of vibration frequencies — that is to say, more than one musical tone — can be sent over the same wire simultaneously, the harmonic telegraph can be utilised as a 'multiplex' or many-ply telegraph, conveying several messages through the same wire at the same time. Each message can either be read by an operator by the sound, or from different tones read by different operators, or a permanent record can be made by the marks drawn on a ribbon of travelling paper by a Morse recorder. On 27 July 1875, Gray was granted U.S. patent 166,096 for "Electric Telegraph for Transmitting Musical Tones" (the harmonic telegraph).

On 14 February 1876, Gray filed a patent caveat for a telephone on the very same day in 1876 as did Bell's lawyer. The water transmitter described in Gray's caveat was strikingly similar to the experimental telephone transmitter tested by Bell on March 10, 1876, a fact which raised questions about whether Bell (who knew of Gray) was inspired by Gray's design or vice versa. Although Bell did not use Gray's water transmitter in later telephones, evidence suggests that Bell's lawyers may have obtained an unfair advantage over Gray.

Alexander Graham Bell

Main article: Alexander Graham Bell
Bell's March 10, 1876 laboratory notebook entry describing his first successful experiment with the telephone.

Alexander Graham Bell of Scotland is commonly credited as the inventor of the first practical telephone. The classic story of his crying out "Watson, come here! I want to see you!" is a well known part of American history. But Alexander Graham Bell was also an astute and articulate business man with influential and wealthy friends.

As Professor of Vocal Physiology at Boston University, Bell was engaged in training teachers in the art of instructing deaf mutes how to speak, and experimented with the Leon Scott phonautograph in recording the vibrations of speech. This apparatus consists essentially of a thin membrane vibrated by the voice and carrying a light-weight stylus, which traces an undulatory line on a plate of smoked glass. The line is a graphic representation of the vibrations of the membrane and the waves of sound in the air.

This background prepared Bell for work with spoken sound waves and electricity. He began his experiments in 1873-1874 with a harmonic telegraph, following the examples of Bourseul, Reis, Meucci, and Gray. Bell's designs employed various on-off-on-off make-break current-interrupters driven by vibrating steel reeds which sent interrupted current to a distant receiver electro-magnet that caused a second steel reed or tuning fork to vibrate.

During a June 2, 1875 experiment by Bell and his assistant Watson, a receiver reed failed to respond to the intermittent current supplied by an electric battery. Bell told Watson, who was at the other end of the line, to pluck the reed, thinking it had stuck to the pole of the magnet. Mr. Watson complied, and to his astonishment Bell heard a reed at his end of the line vibrate and emit the same timbre of a plucked reed, although there was no interrupted on-off-on-off current from a transmitter to make it vibrate. A few more experiments soon showed that his receiver reed had been set in vibration by the magneto-electric currents induced in the line by the motion of the distant receiver reed in the neighbourhood of its magnet. The battery current was not causing the vibration but was needed only to supply the magnetic field in which the reeds vibrated. Moreover, when Bell heard the rich overtones of the plucked reed, it occurred to him that since the circuit was never broken, all the complex vibrations of speech might be converted into undulating (alternating) currents, which in turn would reproduce the complex timbre, amplitude, and frequencies of speech at a distance.

After Bell and Watson discovered on June 2, 1875 that movements of the reed alone in a magnetic field could reproduce the frequencies and timbre of spoken sound waves, Bell reasoned by analogy with the mechanical phonautograph that a skin diaphragm would reproduce sounds like the human ear when connected to a steel or iron reed or hinged armature. On July 1, 1875, he instructed Watson to build a receiver consisting of a stretched diaphragm or drum of goldbeater's skin with an armature of magnetized iron attached to its middle, and free to vibrate in front of the pole of an electromagnet in circuit with the line. A second membrane-device was built for use as a transmitter. This was the "gallows" phone. A few days later they were tried together, one at each end of the line, which ran from a room in the inventor's house in Boston to the cellar underneath. Bell, in the work room, held one instrument in his hands, while Watson in the cellar listened at the other. Bell spoke into his instrument, “Do you understand what I say?” and Mr. Watson answered “Yes”. However, the voice sounds were not distinct and the armature tended to stick to the electromagnet pole and tear the membrane.

Because of illness and other commitments, Bell made little or no telephone improvements or experiments for eight months until after his U.S. patent 174,465 was published. On March 10, 1876, Bell tested Gray's water transmitter design only after Bell's patent was granted and only as a proof of concept scientific experiment to prove to his own satisfaction that intelligible "articulate speech" (Bell's words) could be electrically transmitted. After March 1876, Bell focused on improving the electromagnetic telephone and never used Gray's liquid transmitter in public demonstrations or commercial use.

Bell's success

Alexander Graham Bell's telephone patent drawing, 7 March 1876.
Bell's Prototype Telephone
Centennial Issue of 1976

The first successful bi-directional transmission of clear speech by Bell and Watson was made on March 10, 1876 when Bell spoke into his device, “Mr. Watson, come here, I want to see you.” and Watson answered. Bell used Gray's liquid transmitter design in his famous March 10, 1876 experiment, but Bell did not use a liquid transmitter again, because it was not practical for commercial products.

The first long distance telephone call was made on 10 August 1876 by Bell from the family homestead in Brantford, Ontario, to his assistant located in Paris, Ontario, some 10 miles (16 km) distant.

A finished instrument was then made, having a transmitter formed of a double electromagnet, in front of which a membrane, stretched on a ring, carried an oblong piece of soft iron cemented to its middle. A mouthpiece before the diaphragm directed the sounds upon it, and as it vibrated with them, the soft iron “armature” induced corresponding currents in the coils of the electromagnet. These currents after traversing the line were passed through the receiver, which consisted of a tubular electromagnet, having one end partially closed by a thin circular disc of soft iron fixed at one point to the end of the tube. This receiver bore a resemblance to a cylindrical metal box with thick sides, having a thin iron lid fastened to its mouth by a single screw. When the undulatory current passed through the coil of this magnet, the disc, or armature-lid, was put into vibration and sounds were emitted from it.

This primitive telephone was rapidly improved, the double electromagnet being replaced by a single bar magnet having a small coil or bobbin of fine wire surrounding one pole, in front of which a thin disc of ferrotype was fixed in a circular mouthpiece, and served as a combined membrane and armature. On speaking into the mouthpiece, the iron diaphragm vibrated with the voice in the magnetic field of the pole, and thereby caused undulatory currents in the coil, which, after traveling through the wire to the distant receiver, were received in an identical apparatus. This form was patented January 30, 1877. The sounds were weak and could only be heard when the ear was close to the earphone/mouthpiece, but they were distinct.

Public demonstrations

Earliest public demonstration of Bell's telephone

In June 1876, Bell exhibited a telephone prototype at the Centennial Exhibition in Philadelphia, where it attracted the attention of Brazilian emperor Pedro II and physicist and engineer Sir William Thomson, the 1st Baron Kelvin (best known as "Lord Kelvin"). In August 1876 at a meeting of the British Association for the Advancement of Science, Thomson revealed the telephone to the European public. In describing his visit to the Philadelphia Exhibition, Thomson said, 'I heard passages taken at random from the New York newspapers: "s.s. Cox has arrived" (I failed to make out the s.s. Cox); "The City of New York", "Senator Morton", "The Senate has resolved to print a thousand extra copies", "The Americans in London have resolved to celebrate the coming Fourth of July!" All this my own ears heard spoken to me with unmistakable distinctness by the then circular disc armature of just such another little electro-magnet as this I hold in my hand.'

Later public demonstrations

The later telephone design was publicly exhibited on May 4, 1877 at a lecture given by Professor Bell in the Boston Music Hall. According to a report: Going to the small telephone box with its slender wire attachments, Mr. Bell coolly asked, as though addressing some one in an adjoining room, “Mr. Watson, are you ready!” Mr. Watson, five miles away in Somerville, promptly answered in the affirmative, and soon was heard a voice singing “America”. Going to another instrument, connected by wire with Providence, forty-three miles distant, Mr. Bell listened a moment, and said, “Signor Brignolli, who is assisting at a concert in Providence Music Hall, will now sing for us.” In a moment the cadence of the tenor's voice rose and fell, the sound being faint, sometimes lost, and then again audible. Later, a cornet solo played in Somerville was very distinctly heard. Still later, a three-part song came over the wire from Somerville, and Mr. Bell told his audience “I will switch off the song from one part of the room to another, so that all can hear.” At a subsequent lecture in Salem, Massachusetts, communication was established with Boston, eighteen miles distant, and Mr. Watson at the latter place sang “Auld Lang Syne”, “The Star-Spangled Banner”, and “Hail Columbia”, while the audience at Salem joined in the chorus.

Summary of Bell's achievements

Bell did for the telephone what Henry Ford did for the automobile. Although not the first to experiment with telephonic devices, Bell and the companies founded in his name were the first to develop commercially practical telephones around which a successful business could be built and grow. Bell adopted carbon transmitters similar to Edison's transmitters and adapted telephone exchanges and switching plug boards developed for telegraphy. Watson and other Bell engineers invented numerous other improvements to telephony. Bell succeeded where others failed to assemble a commercially viable telephone system. It can be argued that Bell invented the telephone industry.

Variable resistance transmitters

Water microphone - Elisha Gray

Elisha Gray recognized the lack of fidelity of the make-break transmitter of Reis and Bourseul and reasoned by analogy with the lover's telegraph, that if the current could be made to more closely model the movements of the diaphragm, rather than simply opening and closing the circuit, greater fidelity might be achieved. Gray filed a patent caveat with the US patent office on February 14, 1876 for a liquid microphone. The device used a metal needle or rod that was placed — just barely — into a liquid conductor, such as a water/acid mixture. In response to the diaphragm's vibrations, the needle dipped more or less into the liquid, varying the electrical resistance and thus the current passing through the device and on to the receiver. Gray did not convert his caveat into a patent until after the caveat had expired and hence left the field open to Bell.

When Gray applied for a patent for the variable resistance telephone transmitter, the Patent Office determined "while Gray was undoubtedly the first to conceive of and disclose the invention, as in his caveat of 14 February 1876, his failure to take any action amounting to completion until others had demonstrated the utility of the invention deprives him of the right to have it considered."

Carbon microphone - Thomas Edison

Thomas Alva Edison took the next step in improving the telephone with his invention in 1878 of the carbon grain transmitter that provided a strong voice signal on the transmitting circuit that made long-distance calls practical. Edison discovered that carbon grains, squeezed between two metal plates, had a variable electrical resistance that was related to the pressure. Thus, the grains could vary their resistance as the plates moved in response to sound waves, and reproduce sound with good fidelity, without the weak signals associated with electro-magnetic transmitters.

The carbon microphone was further improved by Emile Berliner, Francis Blake, David E. Hughes, Henry Hunnings, and Anthony White. The carbon transmitter remained standard in telephony until the 1980s, and is still being produced.

Improvements to the early telephone

Additional inventions such as the call bell, central telephone exchange, common battery, ring tone, amplification, trunk lines, wireless phones, etc. were made by various engineers who made the telephone the useful and widespread apparatus it is now.

Telephone exchange - Tivadar Puskás

Tivadar Puskás was working on his idea for a telegraph exchange when Alexander Graham Bell received the first patent for the telephone. This caused Puskás to take a fresh look at his own work and he refocused on perfecting a design for a telephone exchange. Puskás got in touch with the American inventor Thomas Edison who liked the design. According to Edison, "Tivadar Puskas was the first person to suggest the idea of a telephone exchange". Puskás's idea finally became a reality in 1877 in Boston. It was then that the Hungarian word "hallom" "I hear you" was used for the first time in a telephone conversation when, on hearing the voice of the person at the other end of the line, Puskás shouted "hallom". This cannot be confirmed by any original documents, however it has passed into Hungarian modern folklore. Hallom was shortened to Hello, an older greeting that can be traced back to the Old English verb hǽlan.

Controversy

Bell has been widely recognized as the "inventor" of the telephone outside of Italy, where Meucci was championed as its inventor. In the United States, there are numerous reflections of Bell as a North American icon for inventing the telephone, and the matter was for a long time non-controversial. In June 2002, however, the United States House of Representatives passed a symbolic bill recognizing the contributions of Antonio Meucci "in the invention of the telephone" (not "for the invention of the telephone"), throwing the matter into some controversy. Ten days later the Canadian parliament countered with a symbolic motion conferring official recognition for the invention of the telephone to Bell.

Champions of Meucci, of Manzetti, and of Gray have each offered fairly precise tales of a contrivance whereby Bell actively stole the invention of the telephone from their specific inventor. In the 2002 congressional resolution, it was inaccurately noted that Bell worked in a laboratory in which Meucci's materials had been stored, and claimed that Bell must thus have had access to those materials. Manzetti claimed that Bell visited him and examined his device in 1865. And it is alleged that Bell bribed a patent examiner, Zenas Wilber, not only into processing his application before Gray's, but allowing a look at his rival's designs before final submission.

One of the valuable claims in Bell's 1876 U.S. patent 174,465 was claim 4, a method of producing variable electrical current in a circuit by varying the resistance in the circuit. That feature was not shown in any of Bell's patent drawings, but was shown in Elisha Gray's drawings in his caveat filed the same day, 14 February 1876. A description of the variable resistance feature, consisting of seven sentences, was inserted into Bell's application. That it was inserted is not disputed. But when it was inserted is a controversial issue. Bell testified that he wrote the sentences containing the variable resistance feature before 18 January 1876 "almost at the last moment" before sending his draft application to his lawyers. A book by Evenson argues that the seven sentences and claim 4 were inserted, without Bell's knowledge, just before Bell's application was hand carried to the Patent Office by one of Bell's lawyers on 14 February 1876.

Contrary to the popular story, Gray's caveat was taken to the US Patent Office a few hours before Bell's application. Gray's caveat was taken to the Patent Office in the morning of 14 February 1876 shortly after the Patent Office opened and remained near the bottom of the in-basket until that afternoon. Bell's application was filed shortly before noon on 14 February by Bell's lawyer who requested that the filing fee be entered immediately onto the cash receipts blotter and Bell's application was taken to the Examiner immediately. Late in the afternoon, Gray's caveat was entered on the cash blotter and was not taken to the Examiner until the following day. The fact that Bell's filing fee was recorded earlier than Gray's led to the myth that Bell had arrived at the Patent Office earlier. Bell was in Boston on 14 February and did not know this happened until later. Gray later abandoned his caveat and that opened the door to Bell being granted US patent 174465 for the telephone on 7 March 1876.

Further information: Elisha Gray and Alexander Bell telephone controversy

Patents

  • US 161739  Transmitter and Receiver for Electric Telegraphs (tuned steel reeds) by Alexander Graham Bell (April 6, 1875)
  • US 174465  Telegraphy (Bell's first telephone patent) by Alexander Graham Bell (March 7, 1876)
  • US 178399  Telephonic Telegraphic Receiver (vibrating reed) by Alexander Graham Bell (June 6, 1876)
  • US 181553  Generating Electric Currents (magneto) by Alexander Graham Bell (August 29, 1876)
  • US 186787  Electric Telegraphy (permanent magnet receiver) by Alexander Graham Bell (January 15, 1877)
  • US 201488  Speaking Telephone (receiver designs) by Alexander Graham Bell (March 19, 1878)
  • US 213090  Electric Speaking Telephone (frictional transmitter) by Alexander Graham Bell (March 11, 1879)
  • US 220791  Telephone Circuit (twisted pairs of wire) by Alexander Graham Bell (October 21, 1879)
  • US 228507  Electric Telephone Transmitter (hollow ball transmitter) by Alexander Graham Bell (June 8, 1880)
  • US 230168  Circuit for Telephone by Alexander Graham Bell (July 20, 1880)
  • US 238833  Electric Call-Bell by Alexander Graham Bell (March 15, 1881)
  • US 241184  Telephonic Receiver (local battery circuit with coil) by Alexander Graham Bell (May 10, 1881)
  • US 244426  Telephone Circuit (cable of twisted pairs) by Alexander Graham Bell (July 19, 1881)
  • US 252576  Multiple Switch Board for Telephone Exchanges by Leroy Firman (Western Electric) (January 17, 1882)
  • US 474230  Speaking Telegraph (graphite transmitter) by Thomas Edison
  • US 203016  Speaking Telephone (carbon button transmitter) by Thomas Edison
  • US 222390  Carbon Telephone (carbon granules transmitter) by Thomas Edison
  • US 485311  Telephone (solid back carbon transmitter) by Anthony C. White (Bell engineer)
  • US 597062  Calling Device for Telephone Exchange (dial) by A. E. Keith (11 January 1898)
  • US 3449750  Duplex Radio Communication and Signalling Appartus by G. H. Sweigert
  • US 3663762  Cellular Mobile Communication System by Amos Edward Joel (Bell Labs)
  • US 3906166  Radio Telephone System (DynaTAC cell phone) by Martin Cooper et al. (Motorola)

See also

References

  1. Elisha Gray and Alexander Bell Controversy
  2. Inventor's Digest, July/August 1998, p. 26-28
  3. American Treasures of the Library of Congress ... Bell - Lab notebook
  4. Robert Bruce (1990), pages 102-103, 110-113, 120-121
  5. Robert Bruce (1990), pages 104-109
  6. Robert Bruce (1990), pages 146-148
  7. ^ Robert Bruce (1990), page 149
  8. Evenson, page 99.
  9. Evenson, page 98.
  10. Evenson, page 100.
  11. US 174465  Alexander Graham Bell: „Improvement in Telegraphy“ filed on February 14, 1876, granted on March 7, 1876.
  12. Shulman, pages 36-37. Bell's lab notes dated March 9, 1876 show a drawing of a person speaking face down into a liquid transmitter very similar to the liquid transmitter depicted as Fig. 3 in Gray's caveat.
  13. Burton Baker, pages 90-91
  14. http://www.hungarian-history.hu/mszh/epuskas.htm
  15. http://www.mszh.hu/English/feltalalok/puskas.html
  16. http://www.geocities.com/bioelectrochemistry/puskas.html
  17. http://www.omikk.bme.hu/archivum/angol/htm/puskas_t.htm
  18. http://www.hunreal.com/hungarian-things/known-hungarians/tivadar-puskas/
  19. Evenson, pages 64-69, 86-87, 110, 194-196
  20. Evenson, pages 68-69

Bibliography

Further reading

External links

Categories:
Invention of the telephone Add topic