Misplaced Pages

Nicolaus Copernicus

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by 209.184.251.30 (talk) at 19:02, 16 March 2006. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 19:02, 16 March 2006 by 209.184.251.30 (talk)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) For other uses, see Copernicus (disambiguation).
The neutrality of this article is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are met. (Learn how and when to remove this message)
This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (Learn how and when to remove this message)

Nicolaus Copernicus (February 19, 1473May 24, 1543) was an astronomer who provided the first modern formulation of a heliocentric (sun-centered) theory of the solar system in his epochal book, De revolutionibus orbium coelestium.

Copernicus was one of the great polymaths of his age. He was a mathematician, astronomer, jurist, physician, classical scholar, governor, administrator, diplomat, economist and soldier. Amid his extensive responsibilities, he treated astronomy as an avocation. However, his formulation of how the sun rather than the earth is at the center of the universe is considered one of the most important scientific hypotheses in history. It came to mark the starting point of modern astronomy and, in turn, of modern science, encouraging young astronomers, scientists and scholars to take a more skeptical attitude toward established dogma.

Nicolaus Copernicus

Historical background to the question of Copernicus' nationality

Because of geographical uncertainties it remains a matter of dispute to this day whether Copernicus was German or Polish. The father of Copernicus, also named Nicolaus and probably Koppernigk, had been a citizen of Kraków, then the capital of Poland, but left this city in 1460 to move to Toruń (Thorn). This city was part of the Hanseatic League, as well as the Prussian Confederation which, some years before Copernicus' birth, staged an uprising (which shortly led to the Thirteen Years' War when they asked Polish king to join Prussia to his kingdom) to gain independence from the Teutonic Knights who had ruled the area for two hundred years, imposing high taxes which were hindering the economic development in the province. With the Second Treaty of Thorn in 1466, the city as well as Prussia's western part called Royal Prussia became connected to the Kingdom of Poland, which had supported the uprising, while the eastern part remained under administration of the Teutonic Order to become Ducal Prussia later on.

Copernicus, called Mikołaj Kopernik in Polish and Nikolaus Kopernikus in German was born in Toruń (Thorn) and spent most of his working life in Royal Prussia which enjoyed substantial autonomy as part of the lands of the Polish Crown - it had its own Diet, treasury and monetary unit (to which Copernicus' contributed) and armies. He also oversaw the defense of Allenstein/Olsztyn at the head of forces of the Polish king when the troops of Albert of Brandenburg besieged the castle.

In the 19th century, with the rise of German nationalism, attempts were made to claim that Copernicus was exclusively a German and to discount his connection with Poland, however after 1945 those attempts have greatly diminished. In a mirror image of this, some Poles attempted to claim Copernicus exclusively and attempted to downplay his possible German ethnic origin. It is quite possible that his family was ethnically German, and Copernicus was certainly fluent in the German language, while no direct evidence of the extent to which he knew Polish has survived. His main language for written communication was Latin. However, Copernicus was born in western Prussia, later known as Royal Prussia or Polish Prussia, due to its connection to the Kingdom of Poland. He became a burgher of Prussian Ermland or Warmia, an exempt Prince-Bishopric, throughout the rest of his life and he was a loyal subject of the Catholic Prince-Bishops at a time when most of Prussia and Germany had become Protestant. Today he is generally considered to be Polish by virtue of his citizenship. At the same time, it must be remembered that during Copernicus' lifetime nationality played a much less significant role that it did later, and people generally did not think of themselves primarily as Poles or Germans . Therefore, in a modern context, Copernicus may be viewed as an ethnically German Polish citizen.

Copernicus Biography

Toruń City Hall.

Copernicus was born in 1473 when he was ten years old, his father, a wealthy businessman, copper trader and respected citizen of Thorun, died. Little is known of Copernicus' mother, Barbara Watzenrode, who appears to have predeceased her husband. Copernicus' maternal uncle, Lucas Watzenrode, a church canon and later Prince-Bishop governor of Warmia, reared him and his three siblings after the death of Copernicus' father. His uncle's position helped Copernicus in the pursuit of a career within the church, enabling him to devote time for his astronomy studies. Copernicus had a brother and two sisters:

  • Andreas became a canon at Frombork (Frauenburg)
  • Barbara became a Benedictine nun
  • Katharina married a businessman and city councillor, Barthel Gertner

In 1491 Copernicus enrolled at the Jagiellonian University in Kraków, where he probably encountered astronomy for the first time, taught by his teacher Albert Brudzewski. This science soon fascinated him, as shown by his books which were later carried off as war booty by the Swedes during "The Deluge", to the Uppsala University Library). After four years at Kraków, followed by a brief stay back home at Toruń, he went to Italy, where he studied law and medicine at the universities of Bologna and Padua. His bishop-uncle financed his education and wished for him to become a bishop as well. However, while studying canon and civil law at Ferrara, Copernicus met the famous astronomer, Domenico Maria Novara da Ferrara. Copernicus attended his lectures and became his disciple and assistant. The first observations that Copernicus made in 1497, together with Novara, are recorded in Copernicus' epochal book, De revolutionibus orbium coelestium.

Seated statue of Copernicus, by Bertel Thorvaldsen, before the Polish Academy of Sciences in Warsaw.

In 1497 Copernicus' uncle was ordained Bishop of Warmia, and Copernicus was named a canon at Frombork (Frauenburg) Cathedral, but he waited in Italy for the great Jubilee of 1500. Copernicus went to Rome, where he observed a lunar eclipse and gave some lectures in astronomy or mathematics.

He would thus have visited Frombork only in 1501. As soon as he arrived, he requested and obtained permission to return to Italy to complete his studies at Padua (with Guarico and Fracastoro) and at Ferrara (with Giovanni Bianchini), where in 1503 he received his doctorate in canon law. It has been supposed that it was in Padua that he encountered passages from Cicero and Plato about opinions of the ancients on the movement of the Earth, and formed the first intuition of his own future theory. His collection of observations and ideas pertinent to his theory began in 1504.

Having left Italy at the end of his studies, he came to live and work at Frombork. Some time before his return to Warmia, he had received a position at the Collegiate Church of the Holy Cross in Wrocław (Breslau), Silesia, which he would resign a few years before his death. Through the rest of his life he made astronomical observations and calculations, but always in his spare time and never as a profession.

Copernicus worked for years with the Prussian Diet on monetary reform and published some studies about the value of money; as governor of Warmia, he administered taxes and dealt out justice. It was at this time (beginning in 1519, the year of Thomas Gresham's birth) that Copernicus came up with one of the earliest iterations of the theory now known as Gresham's Law. During these years he also travelled extensively on government business and as a diplomat, on behalf of the Prince-Bishop of Warmia.

In 1514 he made his Commentariolus — a short handwritten text describing his ideas about the heliocentric hypothesis — available to friends. Thereafter he continued gathering evidence for a more detailed work. During the war between the Teutonic Order and the Kingdom of Poland (15191524) Copernicus successfully defended Allenstein (Olsztyn) at the head of royal troops besieged by the forces of Albert of Brandenburg.

The astronomer Copernicus: Conversation with God. Painting by Jan Matejko.

In 1533 Albert Widmannstadt delivered a series of lectures in Rome, outlining Copernicus' theory. These lectures were watched with interest by several catholic cardinals, including Pope Clement VII. By 1536 Copernicus' work was already in definitive form, and some rumors about his theory had reached educated people all over Europe. From many parts of the continent, Copernicus received invitations to publish. In a letter, dated Rome, 1 November, 1536, Cardinal Nicola Schönberg of Capua wrote, asking Copernicus to communicate his ideas more widely and requesting a copy for himself; "Therefore, learned man, without wishing to be inopportune, I beg you most emphatically to communicate your discovery to the learned world, and to send me as soon as possible your theories about the Universe, together with the tables and whatever else you have pertaining to the subject." Some have suggested that this note may have made Copernicus leery of publication, while others have suggested that this letter indicates that the Church wanted to ensure that his ideas were published.

In spite the insistence of many, Copernicus kept delaying the final publication of his book; a main reason for it was probably the fear of criticism for his revolutionary work by the establishment. He was still completing his masterpiece (even if he was not convinced that he wanted to publish it) when in 1539 Georg Joachim Rheticus, a great mathematician from Wittenberg, arrived in Frombork. Philipp Melanchthon had arranged for Rheticus to visit several astronomers and study with them. Rheticus became a disciple of Copernicus' and stayed with him for two years, during which he wrote a book, Narratio prima, outlining the essence of the theory.

In 1542, in Copernicus' name, Rheticus published a treatise on trigonometry (later included in the second book of De revolutionibus). Under strong pressure from Rheticus, and having seen that the first general reception of his work had not been unfavorable, Copernicus finally agreed to give the book to his close friend Tiedemann Giese, bishop of Chełmno (Kulm), to be delivered to Rheticus for printing in Nuremberg (Nürnberg).

Legend says that the first printed copy of De revolutionibus was placed in Copernicus' hands on the day he died, so that he could take farewell of his opus vitae. He supposedly woke from a stroke-induced coma, looked at his book, and died peacefully.

Copernicus was buried in Frombork Cathedral. Archeologists searching for his remains had failed to locate them, though they had found interesting graves from various periods. On November 3, 2005, archeologists announced that in August they had recovered Copernicus' skull (see Grave below).

The Copernican heliocentric system

Earlier theories

Much has been written about earlier heliocentric theories. Philolaus (4th century BC) was one of the first to hypothesize movement of the Earth, probably inspired by Pythagoras' theories about a spherical Globe.

Aristarchus of Samos in the 3rd century BC had developed some theories of Heraclides Ponticus (speaking of a revolution by Earth on its axis) to propose what was, so far as is known, the first serious model of a heliocentric solar system. His work about a heliocentric system has not survived, so one may only speculate about what led him to his conclusions. It is notable that, according to Plutarch, a contemporary of Aristarchus accused him of impiety for "putting the Earth in motion."

Aryabhata from India was the first to note that Earth is round. He says "Bhumukha sarvato golah" (Earth is round) and Bhaskara I, also anticipated Copernicus' discoveries by about 1,000 years. The work of the 14th-century Arab astronomer Ibn al-Shatir contains findings similar to Copernicus', and it has been suggested that Copernicus might have been influenced by them.

Copernicus cited Aristarchus and Philolaus in an early manuscript of his book which survives, stating: "Philolaus believed in the mobility of the earth, and some even say that Aristarchus of Samos was of that opinion." For reasons unknown, he struck this passage before publication of his book.

Inspiration came to Copernicus not from observation of the planets, but from reading two authors. In Cicero he found an account of the theory of Hicetas. Plutarch provided an account of the Pythagoreans Heraclides Ponticus, Philolaus, and Ecphantes. These authors had proposed a moving earth that revolved around a central sun. Copernicus did not attribute his inspiration to Aristarchus as is sometimes stated. When Copernicus' book was published, it contained an unauthorized preface by the Lutheran theologian Andreas Osiander. This cleric stated that Copernicus wrote his heliocentric account of the earth's movement as a mere mathematical hypothesis, not as an account that contained truth or even probability. This was apparently written to soften any religious backlash against the book, but there is no evidence that Copernicus considered the heliocentric model as merely mathematically convenient, separate from reality. Copernicus' hypothesis contradicted the account of the sun's movement around the earth that appears in the Old Testament (Joshua 10:13).

It has been argued that in developing the mathematics of heliocentrism Copernicus drew on, not just the Greek, but the Arabic tradition of mathethematics, especially the work of Nasir al-Din al-Tusi and Mu’ayyad al-Din al-‘Urdi.

The Ptolemaic system

The prevailing theory in Europe as Copernicus was writing was that created by Ptolemy in his Almagest, dating from about 150 A.D.. The Ptolemaic system drew on many previous theories that viewed Earth as a stationary center of the universe. Stars were embedded in a large outer sphere which rotated relatively rapidly, while the planets dwelt in smaller spheres between — a separate one for each planet. To account for apparent anomalies to this view, such as the retrograde motion observed in many planets, a system of epicycles was used, by which a planet rotated on a small axis while also rotating on a larger axis around the Earth. Some planets were assigned "major" epicycles (by which retrograde motion could be observed) and "minor" epicycles (which simply warped the overall rotation).

A complementary theory to Ptolemy's employed homocentric spheres: the spheres within which the planets rotated, could themselves rotate somewhat. Also popular with astronomers were variations such as eccentrics — by which the rotational axis was offset and not completely at the center — or that added epicycles to epicycles.

Ptolemy's unique contribution to this theory was the idea of an equant — a complicated addition which specified that, when measuring the rotation of the Sun, one sometimes used the central axis of the universe, but sometimes one set at a different location. This had an overall effect of making certain orbits "wobble," a fact that would greatly bother Copernicus (such wobbling rendered implausible the idea of material "spheres" in which the planets rotated). In the end, after all these complications, the astronomers could still not get observation and theory to match up exactly. In Copernicus' day, the most up-to-date version of the Ptolomaic system was that of Peurbach (1423-1461) and Regiomontanus (1436-1476).

Copernican theory

Copernicus' major theory was published in the book, De revolutionibus orbium coelestium (On the Revolutions of the Heavenly Spheres) in the year of his death, 1543, though he had arrived at his theory several decades earlier.

Statue of Copernicus next to the Jagiellonian University's Collegium Novum (New College), in Kraków

The book marks the beginning of the shift away from a geocentric (and anthropocentric) universe with the Earth at its center. Copernicus held that the Earth is another planet revolving around the fixed sun once a year, and turning on its axis once a day. He arrived at the correct order of the known planets and explained the precession of the equinoxes correctly by a slow change in the position of the Earth's rotational axis. He also gave a clear account of the cause of the seasons: that the Earth's axis is not perpendicular to the plane of its orbit. He added another motion to the Earth, by which the axis is kept pointed throughout the year at the same place in the heavens; since Galileo Galilei, it has been recognized that for the Earth not to point to the same place would have been a motion.

Copernicus also replaced Ptolemy's equant circles with more epicycles. This is the main source of the statement that Copernicus' system had even more epicycles than Ptolemy's. With this change, Copernicus' system showed only uniform circular motions, correcting what he saw as the chief inelegance in Ptolemy's system. But while Copernicus put the Sun at the center of the celestial spheres, he did not put it at the exact center of the universe, but near it.

Copernicus' system was not experimentally better than Ptolemy's model. Copernicus was aware of this and could not present any observational "proof" in his manuscript, relying instead on arguments about what would be a more complete and elegant system. From publication until about 1700, few astronomers were convinced by the Copernican system, though the book was relatively widely circulated (around 500 copies are known to still exist, which is a large number by the scientific standards of the time). Many astronomers, however, accepted some aspects of the theory at the expense of others, and his model did have a large influence on later scientists such as Galileo and Johannes Kepler, who adopted, championed and (especially in Kepler's case) sought to improve it. Galileo's observation of the phases of Venus produced the first observational evidence for Copernicus' theory.

The Copernican system can be summarized in seven propositions, as Copernicus himself collected them in a Compendium of De revolutionibus that was found and published in 1878.

The seven parts of Copernicus' theory are:

1. There is no one center in the universe.

2. The Earth's center is not the center of the universe.

3. The center of the universe is near the sun.

4. The distance from the Earth to the sun is imperceptible compared with the distance to the stars.

5. The rotation of the Earth accounts for the apparent daily rotation of the stars.

6. The apparent annual cycle of movements of the sun is caused by the Earth revolving around the sun.

7. The apparent retrograde motion of the planets is caused by the motion of the Earth, from which one observes.


Whether these propositions were "revolutionary" or "conservative" was a topic of debate in the late twentieth century. Thomas Kuhn argued that Copernicus only transferred "some properties to the sun many astronomical functions previously attributed to the earth." Other historians have since argued that Kuhn underestimated what was "revolutionary" about Copernicus' work, and emphasized the difficulty Copernicus would have had in putting forward a new astronomical theory relying alone on simplicity in geometry, given that he had no experimental evidence.

De revolutionibus orbium coelestium

Title page of De revolutionibus Orbium Coelestium (Part VI, Basel edition)

Main article: De revolutionibus orbium coelestium.

Copernicus' major work, On the Revolutions of the Heavenly Spheres (1543), was the result of decades of labor. It opened with an originally anonymous preface by Andreas Osiander, a theologian friend of Copernicus, who urged that the theory, which was considered a tool that allows simpler and more accurate calculations, did not necessarily have implications outside the limited realm of astronomy. Copernicus' actual book began with a letter from his (by then deceased) friend Nicola Schönberg, the Archbishop of Capua, urging Copernicus to publish his theory. Then, in a lengthy introduction, Copernicus dedicated the book to Pope Paul III, explaining his ostensible motive in writing the book as relating to the inability of earlier astronomers to agree on an adequate theory of the planets, and noting that if his system increased the accuracy of astronomical predictions it would allow the Church to develop a more accurate calendar. At that time, a reform of the Julian Calendar was considered necessary and was one of the major reasons for Church funding of astronomy.

The work itself was then divided into six books:

  1. General vision of the heliocentric theory, and a summarized exposition of his idea of the World
  2. Mainly theoretical, presents the principles of spherical astronomy and a list of stars (as a basis for the arguments developed in the subsequent books)
  3. Mainly dedicated to the apparent motions of the Sun and to related phenomena
  4. Description of the Moon and its orbital motions
  5. Concrete exposition of the new system
  6. Concrete exposition of the new system

Copernicus and Copernicanism

Nicolaus Copernicus

Copernicus' theory is of extraordinary importance in the history of human knowledge. Many authors suggest that only Euclid's geometry, Isaac Newton's physics and Charles Darwin's theory of evolution have exerted a comparable influence on human culture in general and on science in particular.

Many meanings have been ascribed to Copernicus' theory, apart from its strictly scientific import. His work affected religion as well as science, dogma as well as freedom of scientific inquiry. Copernicus' rank as a scientist is often compared with that of Galileo.

Copernicus' work contradicted then-accepted religious dogma: it could be inferred that there was no need of an entity (God) that granted a soul, power and life to the World and to human beings — science could explain everything that was attributed to Him.

Copernicanism, however, also opened a way to immanence, the view that a divine force, or a divine being, pervades all things that exist — a view that has since been developed further in modern philosophy. Immanentism also leads to subjectivism: to the theory that it is perception that creates reality, that there is no underlying reality that exists independent of perception. Thus some argue that Copernicanism demolished the foundations of medieval science and metaphysics.

A corollary of Copernicanism is that scientific law need not be congruent with appearance. This contrasts with Aristotle's system, which placed much more importance on the derivation of knowledge through the senses.

Copernicus' concept marked a scientific revolution. Some, indeed, equate it with the initiation of "the scientific revolution" . Immanuel Kant captured the symbolic character of Copernicus' revolution — its transcendent rationalism — postulating that it was human rationality that was the true interpreter of observed phenomena. More recent philosophers, too, have found continuing validity and philosophical meaning in Copernicanism.

Quotes

Goethe:

"Of all discoveries and opinions, none may have exerted a greater effect on the human spirit than the doctrine of Copernicus. The world had scarcely become known as round and complete in itself when it was asked to waive the tremendous privilege of being the center of the universe. Never, perhaps, was a greater demand made on mankind — for by this admission so many things vanished in mist and smoke! What became of our Eden, our world of innocence, piety and poetry; the testimony of the senses; the conviction of a poetic — religious faith? No wonder his contemporaries did not wish to let all this go and offered every possible resistance to a doctrine which in its converts authorized and demanded a freedom of view and greatness of thought so far unknown, indeed not even dreamed of."

Copernicus:

"For I am not so enamored of my own opinions that I disregard what others may think of them. I am aware that a philosopher's ideas are not subject to the judgement of ordinary persons, because it is his endeavor to seek the truth in all things, to the extent permitted to human reason by God. Yet I hold that completely erroneous views should be shunned. Those who know that the consensus of many centuries has sanctioned the conception that the earth remains at rest in the middle of the heaven as its center would, I reflected, regard it as an insane pronouncement if I made the opposite assertion that the earth moves.
"For when a ship is floating calmly along, the sailors see its motion mirrored in everything outside, while on the other hand they suppose that they are stationary, together with everything on board. In the same way, the motion of the earth can unquestionably produce the impression that the entire universe is rotating.
"Therefore alongside the ancient hypotheses, which are no more probable, let us permit these new hypotheses also to become known, especially since they are admirable as well as simple and bring with them a huge treasure of very skillful observations. So far as hypotheses are concerned, let no one expect anything certain from astronomy, which cannot furnish it, lest he accept as the truth ideas conceived for another purpose, and depart from this study a greater fool than when he entered it. Farewell."

Declaration of the Polish Senate issued on 12th of June 2003.

"At the time of five hundred thirty anniversary of birth and four hundred sixty date of death of Mikołaj Kopernik,the Senat of Republic of Poland expresses its highest respect and praise for this exceptional Pole, one of the greatest scientists in the history of the world. Mikołaj Kopernik, world famous astronomer, author of the breakthrough work "O obrotach sfer niebieskich" is the the one who "Held the Sun and moved Earth". He distinguished himself for the country as exceptional mathematician, economist, lawyer, doctor and priest, as well as defender of the Olsztyn Castle during Polish-Teutonic war. May memory about his achievements last and be a source of inspiration for future generations."

Grave

Frombork Catherdral - Copernicus' burial place

In August 2005, a team of archeologists led by Jerzy Gąssowski, head of an archaeology and anthropology institute in Pułtusk, discovered what they believe to be Copernicus' grave and remains, after scanning beneath the floor of Frombork Cathedral. The find came after a year of searching, and the discovery was announced only after further research, on November 3. Gąssowski said he was "almost 100 percent sure it is Copernicus". Forensic experts used the skull to reconstruct a face that closely resembled the features — including a broken nose and a scar above the left eye — on a Copernicus self-portrait . The experts also determined that the skull had belonged to a man who had died about age 70 — Copernicus' age at the time of his death.

The grave was in poor condition, and not all the remains were found. The archeologists hoped to find relatives of Copernicus in order to attempt DNA identification.

A more detailed Biography

Nicolaus Copernicus is the Latin version of the famous astronomer's name which he chose later in his life. The original form of his name was Mikolaj Kopernik or Nicolaus Koppernigk but we shall use Copernicus throughout this article. His father, also called Nicolaus Koppernigk, had lived in Krakow before moving to Torun where he set up a business trading in copper. He was also interested in local politics and became a civic leader in Torun and a magistrate. Nicolaus Koppernigk married Barbara Watzenrode, who came from a well off family from Torun, in about 1463. They moved into a house in St Anne's Street in Torun, but they also had a summer residence with vineyards out of town. Nicolaus and Barbara Koppernigk had four children, two sons and two daughters, of whom Nicolaus Copernicus was the youngest.

You can see a picture of the house in which Copernicus was born.

When young Nicolaus was ten years old his father died. His uncle Lucas Watzenrode, who was a canon at Frauenburg Cathedral, became guardian to Nicolaus and Barbara Koppernigk's four children.

You can see a picture of Lucas Watzenrode.

Nicolaus and his brother Andreas remained in Torun, continuing their elementary education there. In 1488 Nicolaus was sent by his uncle to the cathedral school of Wloclawek where he received a good standard humanist education. After three years of study at Wloclawek he entered the University of Krakow (situated in what was then the capital of Poland). By this time Lucas Watzenrode was Bishop of Ermland and he envisaged a church career for both of his nephews. Andreas, Nicolaus's brother, entered the University of Krakow at the same time, and both their names appear on the matriculation records of 1491-92.

University education at Krakow was, Copernicus later wrote, a vital factor in everything that he went on to achieve. There he studied Latin, mathematics, astronomy, geography and philosophy. He learnt his astronomy from Tractatus de Sphaera by Johannes de Sacrobosco written in 1220. One should not think, however, that the astronomy courses which Copernicus studied were scientific courses in the modern sense. Rather they were mathematics courses which introduced Aristotle and Ptolemy's view of the universe so that students could understand the calendar, calculate the dates of holy days, and also have skills that would enable those who would follow a more practical profession to navigate at sea. Also taught as a major part of astronomy was what today we would call astrology, teaching students to calculate horoscopes of people from the exact time of their birth.

While a student in Kraków, Copernicus purchased a copy of the Latin translation of Euclid's Elements published in Venice in 1482, a copy of the second edition of the Alfonsine Tables (which gives planetary theory and eclipses) printed in Venice in 1492, and Regiomontanus's Tables of Directions (a work on spherical astronomy) published in Augsburg in 1490. Remarkably Copernicus's copies of these works, signed by him, are still preserved.

It was while he was a student at Krakow that Copernicus began to use this Latin version of his name rather than Kopernik or Koppernigk. He returned to Torun after four years of study at Krakow but, as was common at the time, did not formally graduate with a degree. His uncle Lucas Watzenrode was still determined that Copernicus should have a career in the Church and indeed this was a profession which would allow security for someone wanting to pursue leaning. So that he might have the necessary qualifications Copernicus decided to go to the University of Bologna to take a degree in canon law. In the autumn of 1496 he travelled to Italy, entering the University of Bologna on 19 October 1496, to start three years of study. As a native German speaker he joined the "German Nation of Bologna University". Each student contributed to the "German Nation" an amount they could afford and the small contribution that Copernicus made indicates his poor financial position at that time.

While he was there his uncle put his name forward for the position of canon at Frauenburg Cathedral. On 20 October 1497, while in Bologna, Copernicus received official notification of his appointment as a canon and of the comfortable income he would receive without having to return to carry out any duties. At Bologna University Copernicus studied Greek, mathematics and astronomy in addition to his official course of canon law. He rented rooms at the house of the astronomy professor Domenico Maria de Novara and began to undertake research with him, assisting him in making observations. On 9 March 1497 he observed the Moon eclipse the star Aldebaran.

In 1500 Copernicus visited Rome, as all Christians were strongly encouraged to do to celebrate the great jubilee, and he stayed there for a year lecturing to scholars on mathematics and astronomy. While in Rome he observed an eclipse of the Moon which took place on 6 November 1500. He returned to Frauenburg (also known as Frombork) in the spring of 1501 and was officially installed as a canon of the Ermland Chapter on 27 July. He had not completed his degree in canon law at Bologna so he requested his uncle that he be allowed to return to Italy both to take a law degree and to study medicine. Copernicus was granted leave on 27 July 1501 :-

... principally because Nicolaus promised to study medicine, and as a helpful physician would some day advise our most reverend bishop and also the members of the Chapter.

As this quotation indicates, the Cathedral Chapter liked his proposal to study medicine and provided the necessary funds. He set off again for Italy, his time going to Padua. Copernicus had another reason to return to Italy, which he almost certainly did not disclose, and that was to continue his studies of astronomy.

Padua was famous for its medical school and while he was there Copernicus studied both medicine and astronomy. At that time astronomy was essentially astrology and, as such, considered relevant to medicine since physicians made use of astrology. In the spring of 1503 he decided formally to obtain his doctorate in Canon Law, but he did not return to Bologna but rather took the degree at the University of Ferrara. After receiving his doctorate, Copernicus stayed in Ferrara for a few months before returning to Padua to continue his studies of medicine. There is no record that he ever graduated from Padua.

When he returned to his native land, Copernicus was again granted leave from his official duties as a canon in the Ermland Chapter at Frauenburg. This was allow him to be physician to his maternal uncle Lucas Watzenrode, the Bishop of Ermland, but he carried out far more duties for his uncle than medical ones becoming essentially his private secretary and personal advisor. For about five years he undertook these duties and during this period he lived at Heilsberg Castle, a few miles from Frauenburg, the official residence of the Bishop of Ermland.

In 1509 Copernicus published a work, which was properly printed, giving Latin translations of Greek poetry by the obscure poet Theophylactus Simocattes. While accompanying his uncle on a visit to Krakow, he gave a manuscript of the poetry book to a publisher friend there. Lucas Watzenrode died in 1512 and following this Copernicus resumed his duties as canon in the Ermland Chapter at Frauenburg. He now had more time than before to devote to his study of astronomy, having an observatory in the rooms in which he lived in one of the towers in the town's fortifications.

You can see a picture of Copernicus's observatory in Frauenburg.

Around 1514 he distributed a little book, not printed but hand written, to a few of his friends who knew that he was the author even though no author is named on the title page. This book, usually called the Little Commentary, set out Copernicus's theory of a universe with the sun at its centre. The Little Commentary is a fascinating document. It contains seven axioms which Copernicus gives, not in the sense that they are self evident, but in the sense that he will base his conclusions on these axioms and nothing else; see . What are the axioms? Let us state them:


There is no one centre in the universe.

The Earth's centre is not the centre of the universe.

The centre of the universe is near the sun.

The distance from the Earth to the sun is imperceptible compared with the distance to the stars.

The rotation of the Earth accounts for the apparent daily rotation of the stars.

The apparent annual cycle of movements of the sun is caused by the Earth revolving round it.

The apparent retrograde motion of the planets is caused by the motion of the Earth from which one observes.

Some have noted that 2, 4, 5, and 7 can be deduced from 3 and 6 but it was never Copernicus's aim to give a minimal set of axioms. The most remarkable of the axioms is 7, for although earlier scholars had claimed that the Earth moved, some claiming that it revolved round the sun, nobody before Copernicus appears to have correctly explained the retrograde motion of the outer planets. Even when he wrote his Little Commentary Copernicus was planning to write a major work, for he wrote in it (see ):-

Here, for the sake of brevity, I have thought it desirable to omit the mathematical demonstrations intended for my larger work.

It is likely that he wrote the Little Commentary in 1514 and began writing his major work De revolutionibus in the following year.

Given Copernicus's nature it is clear that he would have liked to have lived a quiet life at Frauenburg, carrying out his (relatively few) duties conscientiously and devoting all his spare time to observing, developing his theories of the universe, and writing De revolutionibus. It is equally clear that his fame as an astronomer was well known for when the Fifth Lateran Council decided to improve the calendar, which was known to be out of phase with the seasons, the Pope appealed to experts for advice in 1514, one of these experts was Copernicus. Many experts went to Rome to advise the Council, but Copernicus chose to respond by letter. He did not wish to contribute more to the discussions on the calendar since he felt that the motions of the heavenly bodies was still not understood with sufficient precision.

The peace which Copernicus wished, however, was not easy to find in a period of frequent wars. The fortifications of Frauenburg that formed Copernicus's home had been built to protect the town which had been captured by various opposing groups over the years. In 1516 Copernicus was given the task of administering the districts of Allenstein (also known as Olsztyn) and Mehlsack. He lived for four years in Allenstein Castle while carrying out these administrative duties.

You can see a picture of Allenstein Castle where Copernicus lived.

Always keen to make observations, Copernicus returned to his home/observatory in Frauenburg whenever there was a reason to attend a meeting or consult with the other canons, always taking the opportunity to further his researches. However when war broke out between Poland and the Teutonic Knights towards the end of 1519 Copernicus was back in Frauenburg. After a period of war, Copernicus was sent to participate in peace talks in Braunsberg as one of a two man delegation representing the Bishop of Ermland. The peace talks failed and the war continued. Frauenburg came under siege but Copernicus continued making his observations even at this desperate time. By the autumn of 1520 Copernicus was back living in Allenstein Castle and had to organise its defence against attacking forces. The castle resisted the attack and by 1521 an uneasy peace had returned.

As a reward for his defence of Allenstein, Copernicus was appointed Commissar of Ermland and given the task of rebuilding the district after the war. His close friend, Tiedemann Giese, another canon in the Chapter, was given the task of assisting him.

You can see a picture of Tiedemann Giese.

As part of the recovery plan, Copernicus put forward a scheme for the reform of the currency which he presented to the Diet of Graudenz in 1522. However, despite attending the Diet and arguing strongly for his sensible proposals, they were not acted on.

Copernicus returned to Frauenburg where his life became less eventful and he had the peace and quiet that he longed for to allow him to make observations and to work on details of his heliocentric theory. Having said that he now had the peace he wanted, one should also realise that he was undertaking his mathematical and astronomical work in isolation with no colleagues with whom to discuss matters. Although Copernicus was a canon, he had never become a priest. In fact on 4 February 1531 his bishop threatened to take away his income if he did not enter the priesthood, yet Copernicus still refused.

A full account of Copernicus's theory was apparently slow to reach a state in which he wished to see it published, and this did not happen until the very end of Copernicus's life when he published his life's work under the title De revolutionibus orbium coelestium (Nuremberg, 1543). In fact had it not been for Georg Joachim Rheticus, a young professor of mathematics and astronomy at the University of Wittenberg, Copernicus's masterpiece might never have been published. In May 1539 Rheticus arrived at Frauenburg where he spent about two years with Copernicus. Rheticus wrote of his visit:-

I heard of the fame of Master Nicolaus Copernicus in the northern lands, and although the University of Wittenberg had made me a Public Professor in those arts, nonetheless, I did not think that I should be content until I had learned something more through the instruction of that man. And I also say that I regret neither the financial expenses nor the long journey nor the remaining hardships. Yet, it seems to me that there came a great reward for these troubles, namely that I, a rather daring young man, compelled this venerable man to share his ideas sooner in this discipline with the whole world.

We should note that Rheticus was a Protestant, so in those troubled times of the Reformation he took somewhat of a risk visiting a Catholic stronghold. In September 1539 Rheticus went to Danzig, visiting the mayor of Danzig, who gave him some financial assistance to help publish the Narratio Prima or, to give it its full title First report to Johann Schöner on the Books of the Revolutions of the learned gentleman and distinguished mathematician, the Reverend Doctor Nicolaus Copernicus of Torun, Canon of Warmia, by a certain youth devoted to mathematics. The publication of this work encouraged Copernicus to publish the full mathematical details of his theory which he had promised 27 years earlier. Swerdlow writes:-

Copernicus could not have asked for a more erudite, elegant, and enthusiastic introduction of his new astronomy to the world of good letters; indeed to this day the "Narratio Prima" remains the best introduction to Copernicus's work.

In his First Report Rheticus wrote about Copernicus's way of working (see ):-

... my teacher always had before his eyes the observations of all ages together with his own, assembled in order as in catalogues; then when some conclusion must be drawn or contribution made to the science and its principles, he proceeds from the earliest observations to his own, seeking the mutual relationship which harmonizes them all; the results thus obtained by correct inference under the guidance of Urania he then compares with the hypothesis of Ptolemy and the ancients; and having made a most careful examination of these hypotheses, he finds that astronomical proof requires their rejection; he assumes new hypotheses, not indeed without divine inspiration and the favour of the gods; by applying mathematics, he geometrically establishes the conclusions which can be drawn from them by correct inference; he then harmonizes the ancient observations and his own with the hypotheses which he has adopted; and after performing all these operations he finally writes down the laws of astronomy ...

While living with Copernicus, Rheticus wrote to several people reporting on the progress Copernicus was making. For example on 2 June 1541 Rheticus wrote that Copernicus :-

... is enjoying quite good health and is writing a great deal ...

while he wrote that on 9 June Copernicus :-

... had finally overcome his prolonged reluctance to release his volume for publication.

By 29 August De revolutionibus orbium coelestium was ready for the printer. Rheticus took the manuscript with him when he returned to his teaching duties at Wittenberg, and gave it the printer Johann Petreius in Nürnberg. This was a leading centre for printing and Petreius was the best printer in town. However, since he was unable to stay to supervise the printing he asked Andreas Osiander, a Lutheran theologian with considerable experience of printing mathematical texts, to undertake the task. What Osiander did was to write a letter to the reader, inserted in place of Copernicus's original Preface following the title page, in which he claimed that the results of the book were not intended as the truth, rather that they merely presented a simpler way to calculate the positions of the heavenly bodies. The letter was unsigned and the true author of the letter was not revealed publicly until Kepler did so 50 years later. Osiander also subtly changed the title to make it appear less like a claim of the real world. Some are appalled at this gigantic piece of deception by Osiander, as Rheticus was at the time, others feel that it was only because of Osiander's Preface that Copernicus's work was read and not immediately condemned.

In De revolutionibus Copernicus states several reasons why it is logical that the sun would be at the centre of the universe:-

At the middle of all things lies the sun. As the location of this luminary in the cosmos, that most beautiful temple, would there be any other place or any better place than the centre, from which it can light up everything at the same time? Hence the sun is not inappropriately called by some the lamp of the universe, by others its mind, and by others its ruler.

Copernicus's cosmology placed a motionless sun not at the centre of the universe, but close to the centre, and also involved giving several distinct motions to the Earth. The problem that Copernicus faced was that he assumed all motion was circular so, like Ptolemy, was forced into using epicycles (see for example ). It was consequently considered implausible by the most of his contemporaries, and by most astronomers and natural philosophers until the middle of the seventeenth century. In the intended Preface of De revolutionibus orbium coelestium Copernicus showed that he was fully aware of the criticisms that his work would attract:-

Perhaps there will be babblers who, although completely ignorant of mathematics, nevertheless take it upon themselves to pass judgement on mathematical questions and, badly distorting some passages of Scripture to their purpose, will dare find fault with my undertaking and censure it. I disregard them even to the extent as despising their criticism as unfounded.

Its notable defenders included Kepler and Galileo while theoretical evidence for the Copernican theory was provided by Newton's theory of universal gravitation around 150 years later.

Copernicus is said to have received a copy of the printed book, consisting of about 200 pages written in Latin, for the first time on his deathbed. He died of a cerebral haemorrhage.

Brahe, who did not accept Copernicus's claim that the Earth moved round the sun, nevertheless wrote:-

Through observations made by himself discovered certain gaps in Ptolemy, and he concluded that the hypotheses established by Ptolemy admit something unsuitable in violation of the axioms of mathematics. Moreover, he found the Alfonsine computations in disagreement with the motions of the heavens. Therefore, with wonderful intellectual acumen he established different hypotheses. He restored the science of the heavenly motions in such a way that nobody before him had a more accurate knowledge of the movements of the heavenly bodies.

Rudnicki gives this appreciation of Copernicus:-

He was truly creative. His scientific method, though determined by the horizons of contemporary knowledge and belief, was yet ideally objective. Ethically, his actions throughout his life bear witness to the highest standards. He did good. He earned the general respect and honour of his contemporaries. For many years he served self-sacrificingly the cause of his native country. But he knew no private, domestic joys.


Article by: J J O'Connor and E F Robertson


See also

References

  1. Understanding Contemporary Germany
  2. Diemut Majer, Non-Germans Under the Third Reich: The Nazi Judicial and Administrative System in Germany,
  3. Norman Davies, God's Playground: A History of Poland,
  • Angus Armitage (1951). The World of Copernicus, New York, Mentor Books. ISBN 0846409798.
  • David C. Goodman and Colin A. Russell, eds. (1991). The Rise of Scientific Europe, 1500-1800. Dunton Green, Sevenoaks, Kent: Hodder & Stoughton: The Open University. ISBN 034055861X.
  • Thomas Kuhn (1957). The Copernican Revolution: Planetary Astronomy in the Development of Western Thought, Harvard University Press. ISBN 0674171004.
  • Owen Gingerich (2004). The Book Nobody Read, Penguin Books. ISBN 0143034766.

External links

External links to sources

External links about Copernicus

External links about De Revolutionibus

External links related to Copernicus legacy

German-Polish Cooperations in tradition of Copernicus

Categories:
Nicolaus Copernicus Add topic