Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
This is an old revision of this page, as edited by Lilily (talk | contribs) at 11:58, 23 November 2013 (create page with references and proofs). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
In mathematics, particularly linear algebra, the Schur product theorem, named after Issai Schur (Schur 1911, p. 14, Theorem VII) (note that Schur signed as J. Schur in Journal für die reine und angewandte Mathematik) states that the Hadamard product of two positive definite matrices is also a positive definite matrix.
Proof
Proof using the trace formula
It is easy to show that for matrices and , the Hadamard product considered as a bilinear form acts on vectors as
where is the matrix trace and is the diagonal matrix having as diagonal entries the elements of .
Since and are positive definite, we can consider their square-roots and and write
Then, for , this is written as for
and thus is positive. This shows that is a positive definite matrix.
Since a covariance matrix is positive definite, this proves that the matrix with elements is a positive definite matrix.
Refercenes
Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1515/crll.1911.140.1, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1515/crll.1911.140.1 instead.
Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1007/b105056, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1007/b105056 instead., page 9, Ch. 0.6 Publication under J. Schur
Attention: This template ({{cite doi}}) is deprecated. To cite the publication identified by doi:10.1112/blms/15.2.97, please use {{cite journal}} (if it was published in a bona fide academic journal, otherwise {{cite report}} with |doi=10.1112/blms/15.2.97 instead.