Misplaced Pages

Gliese 832

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an old revision of this page, as edited by BFDIBebble (talk | contribs) at 22:28, 27 April 2020 (Reverted 1 edit by Real North Korea (talk) to last revision by BFDIBebble (TW)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Revision as of 22:28, 27 April 2020 by BFDIBebble (talk | contribs) (Reverted 1 edit by Real North Korea (talk) to last revision by BFDIBebble (TW))(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Gliese 832
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Grus
Right ascension 21 33 33.9750
Declination −49° 00′ 32.4035″
Apparent magnitude (V) 8.66
Characteristics
Spectral type M2V
B−V color index 1.52
Astrometry
Radial velocity (Rv)18.0 km/s
Proper motion (μ) RA: −45.834±0.071 mas/yr
Dec.: −816.604±0.064 mas/yr
Parallax (π)201.4073 ± 0.0429 mas
Distance16.194 ± 0.003 ly
(4.965 ± 0.001 pc)
Absolute magnitude (MV)10.19
Details
Mass0.45 ± 0.05 M
Radius0.48 R
Luminosity (bolometric)0.035 L
Luminosity (visual, LV)0.007 L
Surface gravity (log g)4.7 cgs
Temperature3,620 K
Metallicity −0.06±0.04 dex
Rotation45.7±9.3 d
Age9.24 Gyr
Other designations
CD-49°13515, HD 204961, HIP 106440, LHS 3685, PLX 5190
Database references
SIMBADThe star
planet c
planet b
Exoplanet Archivedata
Data sources:
Hipparcos Catalogue,
HD

Gliese 832 (Gl 832 or GJ 832) is a red dwarf of spectral type M2V in the southern constellation Grus. The apparent visual magnitude of 8.66 means that it is too faint to be seen with the naked eye. It is located relatively close to the Sun, at a distance of 16.2 light years and has a high proper motion of 818.93 milliarcseconds per year. Gliese 832 has just under half the mass and radius of the Sun. Its estimated rotation period is a relatively leisurely 46 days. The star is roughly 9.5 billion years old.

In 2014, Gliese 832 was announced to be hosting the closest potentially habitable Earth-mass-range exoplanet to the Solar System. This star achieved perihelion some 52,920 years ago when it came within an estimated 15.71 ly (4.817 pc) of the Sun.

Planetary system

Gliese 832 hosts two known planets.

Discovery of Jupiter mass planet

In September 2008, it was announced that a Jupiter-like planet, now designated as Gliese 832 b, had been detected in a long-period, near-circular orbit around this star (false alarm probability thus far: a negligible 0.05%). It would induce an astrometric perturbation on its star of at least 0.95 milliarcseconds and is thus a good candidate for being detected by astrometric observations. Despite its relatively large angular distance, direct imaging is problematic due to the star–planet contrast.

Discovery of Gliese 832 c (super-Earth mass planet) in habitable zone

In 2014, a second planet was discovered by astronomers at the University of New South Wales. This one is believed to be of super-Earth mass and has since been given the scientific name Gliese 832 c. It was announced to orbit in the optimistic habitable zone but outside the conservative habitable zone of its parent star.

The planet is believed to be in, or very close to, the right distance from its sun to allow liquid water to exist on its surface.

Search for cometary disc

If this system has a comet disc, it is undetectable "brighter than the fractional dust luminosity 10" of a recent Herschel study.

The Gliese 832 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
c ≥5.4±1 M🜨 0.162±0-017 35.68±0.03 0.18 ± 0.13
b ≥0.64 ± 0.06 MJ 3.4 ± 0.4 3416 ± 131 0.12 ± 0.11

X-ray source

Gliese 832 emits X-rays.

See also

Notes

  1. Using the absolute visual magnitude of Gliese 832 M V = 10.19 {\displaystyle \scriptstyle M_{V_{\ast }}=10.19} with a bolometric correction of B C = 1.821 {\displaystyle \scriptstyle BC=-1.821} the bolometric magnitude can be calculated as M b o l = 8.369 {\displaystyle \scriptstyle M_{bol_{\ast }}=8.369} , the bolometric magnitude of the Sun M b o l = 4.73 {\displaystyle \scriptstyle M_{bol_{\odot }}=4.73} , and so therefore the bolometric luminosity can be calculated by L b o l L b o l = 10 0.4 ( M b o l M b o l ) {\displaystyle \scriptstyle {\frac {L_{bol_{\ast }}}{L_{bol_{\odot }}}}=10^{0.4\left(M_{bol_{\odot }}-M_{bol_{\ast }}\right)}}
  2. Using the absolute visual magnitude of Gliese 832 M V = 10.19 {\displaystyle \scriptstyle M_{V_{\ast }}=10.19} and the absolute visual magnitude of the Sun M V = 4.83 {\displaystyle \scriptstyle M_{V_{\odot }}=4.83} , the visual luminosity can be calculated by L V L V = 10 0.4 ( M V M V ) {\displaystyle \scriptstyle {\frac {L_{V_{\ast }}}{L_{V_{\odot }}}}=10^{0.4\left(M_{V_{\odot }}-M_{V_{\ast }}\right)}}

References

  1. ^ Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  2. ^ Bailey, J.; Butler, R. P.; Tinney, C. G.; Jones, H. R. A.; O'Toole, S.; Carter, B. D.; Marcy, G. W. (2009). "A Jupiter-like Planet Orbiting the Nearby M Dwarf GJ832". The Astrophysical Journal. 690 (1): 743–747. arXiv:0809.0172. Bibcode:2009ApJ...690..743B. doi:10.1088/0004-637X/690/1/743.
  3. ^ Suárez Mascareño, A.; et al. (September 2015), "Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators", Monthly Notices of the Royal Astronomical Society, 452 (3): 2745–2756, arXiv:1506.08039, Bibcode:2015MNRAS.452.2745S, doi:10.1093/mnras/stv1441.{{citation}}: CS1 maint: unflagged free DOI (link)
  4. Johnson, H. M.; Wright, C. D. (1983). "Predicted infrared brightness of stars within 25 parsecs of the sun". The Astrophysical Journal Supplement Series. 53: 643–771. Bibcode:1983ApJS...53..643J. doi:10.1086/190905.
  5. Flower, Phillip J. (September 1996). "Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections". The Astrophysical Journal. 469: 355. Bibcode:1996ApJ...469..355F. doi:10.1086/177785.
  6. Torres, Guillermo (November 2010). "On the Use of Empirical Bolometric Corrections for Stars". The Astronomical Journal. 140 (5): 1158–1162. arXiv:1008.3913. Bibcode:2010AJ....140.1158T. doi:10.1088/0004-6256/140/5/1158. {{cite journal}}: Unknown parameter |layurl= ignored (help)
  7. Interpolated value from NASA Exoplanet Archive, per: Bessell, M. S. (1995). "The Temperature Scale for Cool Dwarfs". In Tinney, C. G. (ed.). The Bottom of the Main Sequence - and Beyond, Proceedings of the ESO Workshop. Springer-Verlag. p. 123. Bibcode:1995bmsb.conf..123B. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  8. Lindgren, Sara; Heiter, Ulrike (2017). "Metallicity determination of M dwarfs. Expanded parameter range in metallicity and effective temperature". Astronomy and Astrophysics. 604: A97. arXiv:1705.08785. Bibcode:2017A&A...604A..97L. doi:10.1051/0004-6361/201730715.
  9. ^ Safonova, M.; Murthy, J.; Shchekinov, Yu. A. (2014). "Age Aspects of Habitability". International Journal of Astrobiology. 15 (2): 93–105. arXiv:1404.0641. Bibcode:2016IJAsB..15...93S. doi:10.1017/S1473550415000208.
  10. "Gliese 832". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2018-09-23.
  11. ^ "Nearby Alien Planet May Be Capable of Supporting Life", Mike Wall, Space.com, June 25, 2014, http://www.space.com/26357-exoplanet-habitable-zone-gliese-832c.html
  12. ^ Bailer-Jones, C. A. L. (March 2015), "Close encounters of the stellar kind", Astronomy & Astrophysics, 575: 13, arXiv:1412.3648, Bibcode:2015A&A...575A..35B, doi:10.1051/0004-6361/201425221, A35.
  13. Wittenmyer, R.A.; Tuomi, M.; Butler, R.P.; Jones, H. R. A.; O'Anglada-Escude, G.; Horner, J.; Tinney, C.G.; Marshall, J.P.; Carter, B.D.; et al. (2014). "GJ 832c: A super-earth in the habitable zone". The Astrophysical Journal. 1406 (2): 5587. arXiv:1406.5587. Bibcode:2014ApJ...791..114W. doi:10.1088/0004-637X/791/2/114.
  14. B. C. Matthews; forthcoming study promised in Lestrade, J.-F.; Matthews, B. C.; Sibthorpe, B.; Kennedy, G. M.; Wyatt, M. C.; Bryden, G.; Greaves, J. S.; Thilliez, E.; Moro-Martín, A.; Booth, M.; Dent, W. R. F.; Duchêne, G.; Harvey, P. M.; Horner, J.; Kalas, P.; Kavelaars, J. J.; Phillips, N. M.; Rodriguez, D. R.; Su, K. Y. L.; Wilner, D. J. (2012). "A DEBRIS Disk Around The Planet Hosting M-star GJ581 Spatially Resolved with Herschel". Astronomy and Astrophysics. 548: A86. arXiv:1211.4898. Bibcode:2012A&A...548A..86L. doi:10.1051/0004-6361/201220325.
  15. Schmitt, J. H. M. M.; Fleming, T. A.; Giampapa, M. S. (1995). "The X-ray view of the low-mass stars in the solar neighborhood". The Astrophysical Journal. 450 (9): 392–400. Bibcode:1995ApJ...450..392S. doi:10.1086/176149.


Known celestial objects within 20 light-years
Primary member type
Celestial objects by systems. Secondary members are listed in small print.
    0–10 ly
Main-sequence
stars
A-type
G-type
M-type
(red dwarfs)
Brown dwarfs
L-type
  • Luhman 16 (6.5029±0.0011 ly)
  • T-type brown dwarf B
Sub-brown dwarfs
and rogue planets
Y-type
10–15 ly
Subgiant stars
F-type
Main-sequence
stars
G-type
  • Tau Ceti (11.9118±0.0074 ly)
  • 4 (8?) planets: (b), (c), (d), e, f, g, h, (i)
K-type
M-type
(red dwarfs)
Degenerate
stars
White dwarfs
Brown dwarfs
T-type
15–20 ly    
Subgiant stars
G-type
Main-sequence
stars
A-type
G-type
K-type
M-type
(red dwarfs)
Degenerate
stars
White dwarfs
Brown dwarfs
L-type
T-type
Y-type
Sub-brown dwarfs
and rogue planets
Y-type
Italic are systems without known trigonometric parallax.
Constellation of Grus
Stars
Bayer
Variable
HR
HD
Other
Exoplanets
Galaxies
NGC
Other
Galaxy clusters
Category
Categories:
Gliese 832 Add topic