Misplaced Pages

8A4-class ROUV

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from 8A4 class ROUV) Chinese work class remotely operated underwater vehicle

The Chinese 8A4 class ROUV is a remotely operated underwater vehicle (ROUV) used to perform various underwater tasks, ranging from oil platform service to salvage and rescue missions. The 8A4 is a member of a series of related ROUVs developed by the Shenyang Institute of Automation (SIA) in the People's Republic of China (PRC). The predecessor to the 8A4 was the RECON-IV, an improved version of the American RECON-III. The 8A4 itself is an upgraded version of the American AMETEK 2006, and the 7B8 is an improved version of the 8A4.

History

The 8A4's origins trace back to the RECON-IV ROUV. China has operated ROUVs to support its offshore oil and salvage operations since the 1980s, such as Hysub 10 ROUVs and Hysub 40 ROUVs supplied by the Canadian firm International Submarine Engineering in British Columbia. The Shanghai Salvage Bureau deployed Hysub 40 ROUVs and proved them to be a successful platform for offshore oil drilling, salvage, and rescue missions. However, foreign-built ROUVs were too expensive for wide adoption by the People's Liberation Army Navy (PLAN). As a result, China decided to develop its version of ROUVs with similar capabilities.

One of the first Chinese-built ROUVs was the RECON-IV ROUV, which was developed jointly by the Shenyang Institute of Automation of the Chinese Academy of Science and Perry Oceanographic (later purchased by Lockheed Martin) of Riviera Beach, Florida. The design was based on Perry Oceanography's RECON-III ROUV, and RECON-IV's development facilitated technology transfer between the two organizations.

The RECON-IV ROUV was adopted by the People's Liberation Army Navy for salvage and rescue operations. However, like earlier ROUVs, the RECON-IV was primarily designed for civilian operations, which limited military applications such as cutting through the specialized steel used in submarines, and opening valves on sinking vessels. The limitations of the civilian model and the needs of the People's Liberation Army Navy prompted a follow-up design.

8A4

In the late 1980s, China organized a design team to develop a ROUV that meets the needs of military salvage and rescue operations while also being able to perform civilian tasks. Team members included the 702nd Research Institute of the China Shipbuilding Industry Corporation (CSIC), the Shipbuilding Engineering Institute of Harbin Engineering University (HEU), and the Institute of Underwater Engineering of Shanghai Jiao Tong University (SHJTU). Xu Huangnan (徐芑南), a professor of SHJTU, was named as the general designer of the 8A4 ROUV. He would go on to be the deputy general designer of Explorer AUV, as well as the general designer of other Chinese unmanned underwater vehicles, including Sea Dragon class ROUV, CR class AUV, and SJT class ROUV.

To shorten the development time, the team decided to select a ROUV system available on the market whose performance was closest to the requirements and then improve it based on experience developing the RECON-IV ROUV. The AMETEK 2006, an American ROUV used to support offshore oil drilling operations, met both of these criteria, so it was chosen as the basis for the new ROUV. However, the AMETEK 2006 still required extensive improvements to meet the design team's goals.

One of the major upgrades was the redesign and incorporation of two manipulators that could operate around half a dozen tools. These manipulators were completed by the main subcontractor, the Huazhong University of Science and Technology (HUST), and eventually won 1st Place in the Scientific and Technological Advancement Award of the China Shipbuilding Industry Corporation in 1996 . It was also one of the first ROUVs in the Chinese inventory to have a Tether Management System (TMS).

The first 8A4 ROUV completed sea trials in 1993, operating at a depth of up to 600 meters, with a cruising radius of up to 150 meters. During its evaluation, the 8A4 ROUV successfully opened a submarine compartment constructed of special steel, a feat no other ROUV in the Chinese inventory could achieve . It subsequently entered service, and the 8A4 was thus dubbed the most capable salvage and rescue ROUV in Chinese service. In 1996, the 8A4 ROUV won 3rd Place in the Scientific and Technological Advancement Award of the China Shipbuilding Industry Corporation.

Despite industry recognition and awards, the 8A4's deployment is limited due to financial constraints. Except for the first unit, all the remaining 8A4 ROUVs have had their TMS removed due to the budget cuts, resulting in a significant reduction in performance, such as reducing the maximum operational depth by more than half . It was not until the early 2010s that TMS was planned to be reintroduced to all the 8A4 ROUVs to achieve their full capabilities.

Dragon Pearl

Dragon Pearl (Long-Zhu, 龙珠)ROUV is a little known micro-ROUV designed specifically to work with the Jiaolong, operated by the Jiaolong's crew. Therefore, the maximum operating depth of Dragon Pearl is equivalent to that of the Jiaolong.

Specifications:

  • Dimension: < 0.4 meters x 0.4 meters x 0.4 meters
  • Weight: 40 kg
  • Maximum operating depth: > 7000 meters

Sea Crab

Sea Crab (Hai-Xie, 海蟹 in Chinese) ROUV is an experimental ROUV developed from the experience gained from earlier ROUVs. Sea Crab is different from previous ROUVs in that it walks on six legs to walk on the sea floor as a bottom crawler, rather than moving with propellers. Sea Crab was completed in 1984 and served mainly as a proof of concept unit, which lead to the development of later bottom crawler such as Sea Star described below.

Sea Pole

Not to be confused with Sea Pole-class bathyscaphe.

Sea Pole (Hai-Ji, 海极) ROUV is a little-known remotely operated vehicle (ROV) developed from the 8A4 specifically for underwater explorations in polar regions. It has been successfully deployed since the second Chinese Arctic expedition in 2003.

Sea Star

Based on experience gained from earlier Sea Crab bottom crawler, SIA jointly developed Sea Star (Hai-Xing, 海星) ROUV with Italian firm Sonsub. Equipped with two manipulators, Sea Star is a bottom crawler specifically designed for laying underwater cables on the seabed.

Specifications:

  • Weight: < 10 tons
  • Maximum operation depth: 300 meters
  • Maximum excavation depth: 1.5 meters
  • Maximum cable laying speed: 500 meters per hour

Sea Star 6000

While they are grouped in the same family by their developer SIA and share many technologies, Sea Star 6000 is distinct from the original Sea Star in that it has a maximum depth of 6,000 meters and is designed for scientific research missions rather than commercial applications.

Specifications:

  • Length: 2.9 meters
  • Width: 2.1 meters
  • Height: 2.6 meters
  • Weight: 3.5 tons
  • Power: 35 kW
  • Maximum operating depth: 6000 meters
  • Depth positioning accuracy: ± 2 meters
  • Directional positioning accuracy: ± 2°

References

  1. 8A4 ROUV (in Chinese)
  2. ^ Xu Guangrong (April 1, 2016). Biographies of Academicians of Chinese Academy of Science, Biography of Jiang Xinsong (in Simplified Chinese). Beijing: Beijing Book Co. Inc. p. 439. ISBN 9787516509999.
  3. "Manipulators of the 8A4 ROUV (in Chinese)". Archived from the original on 2011-07-07. Retrieved 2009-09-10.
  4. ^ "Dragon Pearl remotely operated vehicle" (in Simplified Chinese). July 2, 2014.
  5. ^ "Dragon Pearl remotely operated underwater vehicle" (in Simplified Chinese). July 10, 2014.
  6. ^ "Dragon Pearl unmanned underwater vehicle" (in Simplified Chinese). July 10, 2014.
  7. "Dragon Pearl ROUV" (in Simplified Chinese). June 26, 2014.
  8. "Dragon Pearl ROV" (in Simplified Chinese). August 14, 2014.
  9. "Dragon Pearl UUV" (in Simplified Chinese). August 21, 2014.
  10. ^ "Sea Crab remotely operated underwater vehicle" (PDF) (in Simplified Chinese). December 31, 2000.
  11. ^ "Sea Star remotely operated vehicle" (in Simplified Chinese). October 18, 2021.
  12. "Sea Pole remotely operated vehicle" (in Simplified Chinese). September 26, 2018. Archived from the original on April 15, 2022. Retrieved March 30, 2022.
  13. "Sea Pole remotely operated underwater vehicle" (in Simplified Chinese). June 29, 2009.
  14. "Sea Pole unmanned underwater vehicle" (in Simplified Chinese). October 13, 2021.
  15. "Sea Pole ROV" (in Simplified Chinese). October 25, 2021.
  16. "Sea Pole ROUV" (in Simplified Chinese). October 25, 2021.
  17. "Sea Pole UUV" (in Simplified Chinese). February 8, 2022.
  18. ^ "Sea Star remotely operated underwater vehicle" (in Simplified Chinese). October 26, 2018.
  19. ^ He Yuqing & han Jianda (August 1, 2016). Theories and Practice of Robotics Technological Development Route (in Simplified Chinese). Beijing: Beijing Book Co. Inc. p. 148. ISBN 9787538198232.
  20. "Sea Star unmanned underwater vehicle" (in Simplified Chinese). July 15, 2013.
  21. ^ "Sea Star 6000 remotely operated vehicle" (in Simplified Chinese). March 13, 2018.
  22. "Sea Star 6000 remotely operated underwater vehicle" (in Simplified Chinese). October 29, 2018.
  23. "Sea Star 6000 unmanned underwater vehicle" (in Simplified Chinese). October 30, 2018.
  24. "Sea Star 6000 ROUV" (in Simplified Chinese). October 29, 2018.
  25. "Sea Star 6000 UUV" (in Simplified Chinese). October 29, 2018.

External links

Underwater diving
Diving equipment
Basic equipment
Breathing gas
Buoyancy and
trim equipment
Decompression
equipment
Diving suit
Helmets
and masks
Instrumentation
Mobility
equipment
Safety
equipment
Underwater
breathing
apparatus
Open-circuit
scuba
Diving rebreathers
Surface-supplied
diving equipment
Diving
equipment
manufacturers
Diving support equipment
Access equipment
Breathing gas
handling
Decompression
equipment
Platforms
Underwater
habitat
Remotely operated
underwater vehicles
Safety equipment
General
Freediving
Activities
Competitions
Equipment
Freedivers
Hazards
Historical
Organisations
Professional diving
Occupations
Military
diving
Military
diving
units
Underwater
work
Salvage diving
Diving
contractors
Tools and
equipment
Underwater
weapons
Underwater
firearm
Recreational diving
Specialties
Diver
organisations
Diving tourism
industry
Diving events
and festivals
Diving safety
Diving
hazards
Consequences
Diving
procedures
Risk
management
Diving team
Equipment
safety
Occupational
safety and
health
Diving medicine
Diving
disorders
Pressure
related
Oxygen
Inert gases
Carbon dioxide
Breathing gas
contaminants
Immersion
related
Treatment
Personnel
Screening
Research
Researchers in
diving physiology
and medicine
Diving medical
research
organisations
Law
History of underwater diving
Archeological
sites
Underwater art
and artists
Engineers
and inventors
Historical
equipment
Diver
propulsion
vehicles
Military and
covert operations
Scientific projects
Awards and events
Incidents
Dive boat incidents
Diver rescues
Early diving
Freediving fatalities
Offshore
diving
incidents
Professional
diving
fatalities
Scuba diving
fatalities
Publications
Manuals
Standards and
Codes of Practice
General non-fiction
Research
Dive guides
Training and registration
Diver
training
Skills
Recreational
scuba
certification
levels
Core diving skills
Leadership skills
Specialist skills
Diver training
certification
and registration
organisations
Commercial diver
certification
authorities
Commercial diving
schools
Free-diving
certification
agencies
Recreational
scuba
certification
agencies
Scientific diver
certification
authorities
Technical diver
certification
agencies
Cave
diving
Military diver
training centres
Military diver
training courses
Underwater sports
Surface snorkeling
Snorkeling/breath-hold
Breath-hold
Open Circuit Scuba
Rebreather
Sports governing
organisations
and federations
Competitions
Underwater divers
Pioneers
of diving
Underwater
scientists
archaeologists and
environmentalists
Scuba record
holders
Underwater
filmmakers
and presenters
Underwater
photographers
Underwater
explorers
Aquanauts
Writers and journalists
Rescuers
Frogmen
Commercial salvors
Science of underwater diving
Diving
physics
Diving
physiology
Decompression
theory
Diving
environments
Classification
Impact
Other
Deep-submergence
vehicle
Submarine rescue
Deep-submergence
rescue vehicle
Submarine escape
Escape set
Special
interest
groups
Neutral buoyancy
facilities for
Astronaut training
Other
China Active ship classes of the People's Liberation Army Navy
Submarines
Nuclear
ballistic missile (SSBN)
Nuclear attack (SSN)
Conventional
ballistic missile (SSB)
Conventional
attack (SS/SSK)
Air-independent propulsion
equipped (SSI/SSP)
Hunter-killer (SSK)
Medium (SS)
Unclassified miscellaneous (IXSS)
Principal surface combatants
Aircraft carriers (CV)
Destroyers (DDG)
Frigates (FFG)
Coastal warfare vessels
Corvettes (FS)
Submarine chasers (PCSC)
Armed merchantmen (SP)
Missile boats (PCM)
Torpedo boats (PT)
Gunboats (PG)
Patrol boats (PB)
Seagoing
Port security boat (PSB)
Reconnaissance patrol combatant (PGR)
Amphibious warfare vessels
Landing helicopter dock (LHD) or
Landing helicopter assault (LHA)
Amphibious transport dock (LPD)
Dock landing ship (LSD)
Landing ship helicopter (LSH)
Landing ship tank (LST)
Landing ship medium (LSM)
Landing craft (LC)
Landing craft tank (LCT)
Landing craft utility (LCU)
Air-cushioned
landing craft (LCAC)
Mine warfare vessels (MCM)
Minelayers (ML)
Auxiliary minelayers (MMA)
Minehunters (MH)
Minesweepers (MS)
Minesweeping
drone (MSD)
Auxiliary Minesweepers (MSA)
Auxiliary vessels
Ammunition
ships (AE/AEM)
Ammunition ship (AE)
Ammunition ship, Missile/Rocket (AEM)
Buoy tenders (AGL)
Cable layers (ARC)
Cargo ships (AK)
Reefer ships (AF)
Cargo ships (AK)
Float-on/float-
off ships
(AKF)
General stores
issue ships (AKS)
Roll-on/roll-
off ships
(AKR)
Container ships (AKX)
  • Converted/militarized container ships
Self-propelled
lighters/barges (YF)
Crane ship (AB)
Degaussing /
deperming ships (ADG)
Dive tenders (YDT)
Dredgers (AGD)
Engineering
ships
  • Engineering ships of unknown class/type: Bei-Gong 275 & 276
Environmental
research ships (AGER)
Fleet Replenishment
ship (AEFS)
Floating pile drivers (YPD)
General purpose
research ships (AGE)
Harbor utility
craft (YFU)
Hospital ships (AH)
Hospital ships (AH)
Medical evacuation ships (AHP)
Ambulance transports (APH)
Ambulance craftd (YH)
Hydrographic
survey ships (AGS)
Icebreakers (AGB)
Museum ships
Oceanographic
research ships (AGOR)
Oceanographic
surveillance ships (AGOS)
Personnel
transport (AP)
Barracks ships (APB)
Dispatch boat (YFB/YFL)
Transport ships (AP)
Troopships (APT)
Range support &
target ships (AGT)
Repair ships (AR)
Repair dry
docks
(ARD)
Repair ships (AR)
Rescue and
salvage ships
Heavy-lift ship (YHLC)
Rescue ships (ARS)
Salvage ships (ATS)
Spy ships (AGI)
Submarine
support ships
Submarine
rescue ships (ASR)
Submarine tenders (AS)
Submersibles (X)
Deep-submergence
rescue vehicle (DSRV)
Deep-submergence
vehicle (DSV)
Other
Submersibles (X)
Diver propulsion
vehicles (DPV)
Tankers
Replenishment tanker (AOR)
Transport oiler (AOT)
Water tanker (AWT)
Technological
research
ships
Sonar trials ships
Technical research
ships
(AGTR)
Unclassified Miscellaneous
Submarine (IXSS)
Torpedo trials craft
Torpedo retrievers
(TR/TWR)
Torpedo trials ships (YTT)
Tracking ship (AGM)
Training ships (AX)
Training ship (AX)
Training ship, sail (AXS)
Onshore stationary
training facilities
Tugs (AT)
Harbor tug (YT)
Large harbor tug (YTB)
Rescue Tug (ATR)
Sea-going Tug (ATA)
Tugs of unknown class/type
  • Bei-Tuo 153, 651, 704, 728, Dong-Tuo 845, 861, Nan-Tuo 142, 163, 168, 176, 187, 188
UAV mothershps (ATLS)
Unmanned surface
vehicles (USV)
Unmanned underwater
vehicles (UUV)
Autonomous
underwater vehicle (AUV)
Benthic landers
Bottom crawlers
Hybrid UUVs (Autonomous remotely
-operated vehicles, ARVs)
Remotely operated
underwater vehicle (ROUV)
Underwater gliders
Wave gliders
Weapon trials
ships (AVM/AGM)
* = Under construction or procurement, = Classified as guided missile cruiser by NATO, = Classified as light frigate by PLAN
Categories: