Misplaced Pages

ARM11

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from ARM11 MPCore) 32-bit ARM core
This article may contain unverified or indiscriminate information in embedded lists. Please help clean up the lists by removing items or incorporating them into the text of the article. (November 2015)

ARM11
General information
Designed byARM Holdings
Architecture and classification
MicroarchitectureARMv6, ARMv6T2, ARMv6Z, ARMv6K
Instruction setARM (32-bit),
Thumb (16-bit),
Thumb-2 (32-bit)

ARM11 is a group of 32-bit RISC ARM processor cores licensed by ARM Holdings. The ARM11 core family consists of ARM1136J(F)-S, ARM1156T2(F)-S, ARM1176JZ(F)-S, and ARM11MPCore. Since ARM11 cores were released from 2002 to 2005, they are no longer recommended for new IC designs, instead ARM Cortex-A and ARM Cortex-R cores are preferred.

Overview

Announced
Year Core
2002 ARM1136J(F)-S
2003 ARM1156T2(F)-S
2003 ARM1176JZ(F)-S
2005 ARM11MPCore
See also: ARM architecture and List of ARM cores

The ARM11 product family (announced 29 April 2002) introduced the ARMv6 architectural additions which had been announced in October 2001. These include SIMD media instructions, multiprocessor support, exclusive loads and stores instructions and a new cache architecture. The implementation included a significantly improved instruction processing pipeline, compared to previous ARM9 or ARM10 families, and is used in smartphones from Apple, Nokia, and others. The initial ARM11 core (ARM1136) was released to licensees in October 2002.

The ARM11 family are currently the only ARMv6-architecture cores. There are, however, ARMv6-M cores (Cortex-M0 and Cortex-M1), addressing microcontroller applications; ARM11 cores target more demanding applications.

Differences from ARM9

In terms of instruction set, ARM11 builds on the preceding ARM9 generation. It incorporates all ARM926EJ-S features and adds the ARMv6 instructions for media support (SIMD) and accelerating IRQ response.

Microarchitecture improvements in ARM11 cores include:

  • SIMD instructions which can double MPEG-4 and audio digital signal processing algorithm speed
  • Cache is physically addressed, solving many cache aliasing problems and reducing context switch overhead.
  • Unaligned and mixed-endian data access is supported.
  • Reduced heat production and lower overheating risk
  • Redesigned pipeline, supporting faster clock speeds (target up to 1 GHz)
    • Longer: 8 (vs 5) stages
    • Out-of-order completion for some operations (e.g., stores)
    • Dynamic branch prediction/folding (like XScale)
    • Cache misses don't block execution of non-dependent instructions.
    • Load/store parallelism
    • ALU parallelism
  • 64-bit data paths

JTAG debug support (for halting, stepping, breakpoints, and watchpoints) was simplified. The EmbeddedICE module was replaced with an interface which became part of the ARMv7 architecture. The hardware tracing modules (ETM and ETB) are compatible, but updated, versions of those used in the ARM9. In particular, trace semantics were updated to address parallel instruction execution and data transfers.

ARM makes an effort to promote recommended Verilog coding styles and techniques. This ensures semantically rigorous designs, preserving identical semantics throughout the chip design flow, which included extensive use of formal verification techniques. Without such attention, integrating an ARM11 with third-party designs could risk exposing hard-to-find latent bugs. Due to ARM cores being integrated into many different designs, using a variety of logic synthesis tools and chip manufacturing processes, the impact of its register-transfer level (RTL) quality is magnified many times. The ARM11 generation focused more on synthesis than previous generations, making such concerns more of an issue.

Cores

There are four ARM11 cores:

  • ARM1136
  • ARM1156, introduced Thumb2 instructions
  • ARM1176, introduced security extensions
  • ARM11MPcore, introduced multicore support

Chips

Raspberry Pi B+ with a Broadcom BCM2835 (ARM1176JZF-S)
Atheros AR7400
STMicroelectronics STA2065N2 (ARM1176) with embedded GPS
This list is incomplete; you can help by adding missing items. (December 2011)
This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (November 2015) (Learn how and when to remove this message)

See also

References

  1. ^ ARM11 Family Webpage; ARM Holdings.
  2. "ARM11 MPCore Processor Revision: r2p0 Technical Reference Manual". p. 36(1-4),301-302(8-7,8-8). Retrieved 14 December 2023.
  3. not supported by Linux as of version 3.3
  4. "The ARM11 Microarchitecture", ARM Ltd, 2002
  5. The Dangers of Living with an X (bugs hidden in your Verilog), Version 1.1 (14 October 2003).
  6. "ARM1136JF-S and ARM1136J-S Technical Reference Manual Revision: r1p5; ARM DDI 0211K".
  7. "ARM1176JZF-S Technical Reference Manual Revision: r0p7". Retrieved 4 October 2012.
  8. "BCM2835 – Raspberry Pi Documentation". raspberrypi.org. Retrieved 15 April 2017.
  9. "Cavium Networks Introduces ECONA Family of Super Energy Efficient ARM-Based System-on-Chip (SoC) Processors for the Digital Home that break the 1 Watt Barrier" (Press release). Cavium. 8 September 2009. Archived from the original on 17 November 2015. Retrieved 14 November 2015.

BlackBerry Torch 9810

External links

ARM11 official documents
Quick Reference Cards
  • Instructions: Thumb (1), ARM and Thumb-2 (2), Vector Floating Point (3)
  • Opcodes: Thumb (1, 2), ARM (3, 4), GNU Assembler Directives 5.
Other
Classic ARM-based chips
Classic
processors
ARM7
ARM9
ARM11
ARMv2a
compatible
ARMv4
compatible
ARMv5TE
compatible
  • Intel/Marvell XScale
  • Marvell Sheeva, Feroceon, Jolteon, Mohawk
  • Faraday FA606TE, FA616TE, FA626TE, FA726TE
Application ARM-based chips
Application
processors
(32-bit)
ARMv7-A
Cortex-A5
Cortex-A7
Cortex-A8
Cortex-A9
Cortex-A15
Cortex-A17
Others
ARMv7-A
compatible
ARMv8-A
Others
Application
processors
(64-bit)
ARMv8-A
Cortex-A35
Cortex-A53
Cortex-A57
Cortex-A72
Cortex-A73
Others
ARMv8-A
compatible
ARMv8.1-A
ARMv8.1-A
compatible
ARMv8.2-A
Cortex-A55
Cortex-A75
Cortex-A76
Cortex-A77
Cortex-A78
Cortex-X1
Neoverse N1
Others
  • Cortex-A65, Cortex-A65AE, Cortex-A76AE, Cortex-A78C, Cortex-X1C, Neoverse E1
ARMv8.2-A
compatible
ARMv8.3-A
ARMv8.3-A
compatible
ARMv8.4-A
Neoverse V1
ARMv8.4-A
compatible
ARMv8.5-A
ARMv8.5-A
compatible
ARMv8.6-A
ARMv8.6-A
compatible
ARMv8.7-A
ARMv8.7-A
compatible
ARMv9.0-A
Cortex-A510
Cortex-A710
Cortex-A715
Cortex-X2
Cortex-X3
Neoverse N2
Neoverse V2
ARMv9.2-A
Cortex-A520
Cortex-A720
Cortex-A725
Cortex-X4
Cortex-X925
Neoverse N3-
Neoverse V3-
ARMv9.2-A
compatible
Categories: