In linear algebra , a Block LU decomposition is a matrix decomposition of a block matrix into a lower block triangular matrix L and an upper block triangular matrix U . This decomposition is used in numerical analysis to reduce the complexity of the block matrix formula.
Block LDU decomposition
(
A
B
C
D
)
=
(
I
0
C
A
−
1
I
)
(
A
0
0
D
−
C
A
−
1
B
)
(
I
A
−
1
B
0
I
)
{\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I&0\\CA^{-1}&I\end{pmatrix}}{\begin{pmatrix}A&0\\0&D-CA^{-1}B\end{pmatrix}}{\begin{pmatrix}I&A^{-1}B\\0&I\end{pmatrix}}}
Block Cholesky decomposition
Consider a block matrix :
(
A
B
C
D
)
=
(
I
C
A
−
1
)
A
(
I
A
−
1
B
)
+
(
0
0
0
D
−
C
A
−
1
B
)
,
{\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I\\CA^{-1}\end{pmatrix}}\,A\,{\begin{pmatrix}I&A^{-1}B\end{pmatrix}}+{\begin{pmatrix}0&0\\0&D-CA^{-1}B\end{pmatrix}},}
where the matrix
A
{\displaystyle {\begin{matrix}A\end{matrix}}}
is assumed to be non-singular,
I
{\displaystyle {\begin{matrix}I\end{matrix}}}
is an identity matrix with proper dimension, and
0
{\displaystyle {\begin{matrix}0\end{matrix}}}
is a matrix whose elements are all zero.
We can also rewrite the above equation using the half matrices:
(
A
B
C
D
)
=
(
A
1
2
C
A
−
∗
2
)
(
A
∗
2
A
−
1
2
B
)
+
(
0
0
0
Q
1
2
)
(
0
0
0
Q
∗
2
)
,
{\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}A^{\frac {1}{2}}\\CA^{-{\frac {*}{2}}}\end{pmatrix}}{\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\end{pmatrix}}+{\begin{pmatrix}0&0\\0&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\\0&Q^{\frac {*}{2}}\end{pmatrix}},}
where the Schur complement of
A
{\displaystyle {\begin{matrix}A\end{matrix}}}
in the block matrix is defined by
Q
=
D
−
C
A
−
1
B
{\displaystyle {\begin{matrix}Q=D-CA^{-1}B\end{matrix}}}
and the half matrices can be calculated by means of Cholesky decomposition or LDL decomposition .
The half matrices satisfy that
A
1
2
A
∗
2
=
A
;
A
1
2
A
−
1
2
=
I
;
A
−
∗
2
A
∗
2
=
I
;
Q
1
2
Q
∗
2
=
Q
.
{\displaystyle {\begin{matrix}A^{\frac {1}{2}}\,A^{\frac {*}{2}}=A;\end{matrix}}\qquad {\begin{matrix}A^{\frac {1}{2}}\,A^{-{\frac {1}{2}}}=I;\end{matrix}}\qquad {\begin{matrix}A^{-{\frac {*}{2}}}\,A^{\frac {*}{2}}=I;\end{matrix}}\qquad {\begin{matrix}Q^{\frac {1}{2}}\,Q^{\frac {*}{2}}=Q.\end{matrix}}}
Thus, we have
(
A
B
C
D
)
=
L
U
,
{\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}=LU,}
where
L
U
=
(
A
1
2
0
C
A
−
∗
2
0
)
(
A
∗
2
A
−
1
2
B
0
0
)
+
(
0
0
0
Q
1
2
)
(
0
0
0
Q
∗
2
)
.
{\displaystyle LU={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {*}{2}}}&0\end{pmatrix}}{\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\\0&0\end{pmatrix}}+{\begin{pmatrix}0&0\\0&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\\0&Q^{\frac {*}{2}}\end{pmatrix}}.}
The matrix
L
U
{\displaystyle {\begin{matrix}LU\end{matrix}}}
can be decomposed in an algebraic manner into
L
=
(
A
1
2
0
C
A
−
∗
2
Q
1
2
)
a
n
d
U
=
(
A
∗
2
A
−
1
2
B
0
Q
∗
2
)
.
{\displaystyle L={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {*}{2}}}&Q^{\frac {1}{2}}\end{pmatrix}}\mathrm {~~and~~} U={\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\\0&Q^{\frac {*}{2}}\end{pmatrix}}.}
See also
References
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑