Misplaced Pages

Block LU decomposition

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Block LU decomposition" – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message)

In linear algebra, a Block LU decomposition is a matrix decomposition of a block matrix into a lower block triangular matrix L and an upper block triangular matrix U. This decomposition is used in numerical analysis to reduce the complexity of the block matrix formula.

Block LDU decomposition

( A B C D ) = ( I 0 C A 1 I ) ( A 0 0 D C A 1 B ) ( I A 1 B 0 I ) {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I&0\\CA^{-1}&I\end{pmatrix}}{\begin{pmatrix}A&0\\0&D-CA^{-1}B\end{pmatrix}}{\begin{pmatrix}I&A^{-1}B\\0&I\end{pmatrix}}}

Block Cholesky decomposition

Consider a block matrix:

( A B C D ) = ( I C A 1 ) A ( I A 1 B ) + ( 0 0 0 D C A 1 B ) , {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I\\CA^{-1}\end{pmatrix}}\,A\,{\begin{pmatrix}I&A^{-1}B\end{pmatrix}}+{\begin{pmatrix}0&0\\0&D-CA^{-1}B\end{pmatrix}},}

where the matrix A {\displaystyle {\begin{matrix}A\end{matrix}}} is assumed to be non-singular, I {\displaystyle {\begin{matrix}I\end{matrix}}} is an identity matrix with proper dimension, and 0 {\displaystyle {\begin{matrix}0\end{matrix}}} is a matrix whose elements are all zero.

We can also rewrite the above equation using the half matrices:

( A B C D ) = ( A 1 2 C A 2 ) ( A 2 A 1 2 B ) + ( 0 0 0 Q 1 2 ) ( 0 0 0 Q 2 ) , {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}A^{\frac {1}{2}}\\CA^{-{\frac {*}{2}}}\end{pmatrix}}{\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\end{pmatrix}}+{\begin{pmatrix}0&0\\0&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\\0&Q^{\frac {*}{2}}\end{pmatrix}},}

where the Schur complement of A {\displaystyle {\begin{matrix}A\end{matrix}}} in the block matrix is defined by

Q = D C A 1 B {\displaystyle {\begin{matrix}Q=D-CA^{-1}B\end{matrix}}}

and the half matrices can be calculated by means of Cholesky decomposition or LDL decomposition. The half matrices satisfy that

A 1 2 A 2 = A ; A 1 2 A 1 2 = I ; A 2 A 2 = I ; Q 1 2 Q 2 = Q . {\displaystyle {\begin{matrix}A^{\frac {1}{2}}\,A^{\frac {*}{2}}=A;\end{matrix}}\qquad {\begin{matrix}A^{\frac {1}{2}}\,A^{-{\frac {1}{2}}}=I;\end{matrix}}\qquad {\begin{matrix}A^{-{\frac {*}{2}}}\,A^{\frac {*}{2}}=I;\end{matrix}}\qquad {\begin{matrix}Q^{\frac {1}{2}}\,Q^{\frac {*}{2}}=Q.\end{matrix}}}

Thus, we have

( A B C D ) = L U , {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}=LU,}

where

L U = ( A 1 2 0 C A 2 0 ) ( A 2 A 1 2 B 0 0 ) + ( 0 0 0 Q 1 2 ) ( 0 0 0 Q 2 ) . {\displaystyle LU={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {*}{2}}}&0\end{pmatrix}}{\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\\0&0\end{pmatrix}}+{\begin{pmatrix}0&0\\0&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\\0&Q^{\frac {*}{2}}\end{pmatrix}}.}

The matrix L U {\displaystyle {\begin{matrix}LU\end{matrix}}} can be decomposed in an algebraic manner into

L = ( A 1 2 0 C A 2 Q 1 2 )     a n d     U = ( A 2 A 1 2 B 0 Q 2 ) . {\displaystyle L={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {*}{2}}}&Q^{\frac {1}{2}}\end{pmatrix}}\mathrm {~~and~~} U={\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\\0&Q^{\frac {*}{2}}\end{pmatrix}}.}

See also

References

Category: