Misplaced Pages

CAT(0) group

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, a CAT(0) group is a finitely generated group with a group action on a CAT(0) space that is geometrically proper, cocompact, and isometric. They form a possible notion of non-positively curved group in geometric group theory.

Definition

Let G {\displaystyle G} be a group. Then G {\displaystyle G} is said to be a CAT(0) group if there exists a metric space X {\displaystyle X} and an action of G {\displaystyle G} on X {\displaystyle X} such that:

  1. X {\displaystyle X} is a CAT(0) metric space
  2. The action of G {\displaystyle G} on X {\displaystyle X} is by isometries, i.e. it is a group homomorphism G I s o m ( X ) {\displaystyle G\longrightarrow \mathrm {Isom} (X)}
  3. The action of G {\displaystyle G} on X {\displaystyle X} is geometrically proper (see below)
  4. The action is cocompact: there exists a compact subset K X {\displaystyle K\subset X} whose translates under G {\displaystyle G} together cover X {\displaystyle X} , i.e. X = G K = g G g K {\displaystyle X=G\cdot K=\bigcup _{g\in G}g\cdot K}

An group action on a metric space satisfying conditions 2 - 4 is sometimes called geometric.

This definition is analogous to one of the many possible definitions of a Gromov-hyperbolic group, where the condition that X {\displaystyle X} is CAT(0) is replaced with Gromov-hyperbolicity of X {\displaystyle X} . However, contrarily to hyperbolicity, CAT(0)-ness of a space is not a quasi-isometry invariant, which makes the theory of CAT(0) groups a lot harder.

CAT(0) space

Main article: CAT(k) space

Metric properness

The suitable notion of properness for actions by isometries on metric spaces differs slightly from that of a properly discontinuous action in topology. An isometric action of a group G {\displaystyle G} on a metric space X {\displaystyle X} is said to be geometrically proper if, for every x X {\displaystyle {\ce {x\in X}}} , there exists r > 0 {\displaystyle r>0} such that { g G | B ( x , r ) g B ( x , r ) } {\displaystyle \{g\in G|B(x,r)\cap g\cdot B(x,r)\neq \emptyset \}} is finite.

Since a compact subset K {\displaystyle K} of X {\displaystyle X} can be covered by finitely many balls B ( x i , r i ) {\displaystyle B(x_{i},r_{i})} such that B ( x i , 2 r i ) {\displaystyle B(x_{i},2r_{i})} has the above property, metric properness implies proper discontinuity. However, metric properness is a stronger condition in general. The two notions coincide for proper metric spaces.

If a group G {\displaystyle G} acts (geometrically) properly and cocompactly by isometries on a length space X {\displaystyle X} , then X {\displaystyle X} is actually a proper geodesic space (see metric Hopf-Rinow theorem), and G {\displaystyle G} is finitely generated (see Švarc-Milnor lemma). In particular, CAT(0) groups are finitely generated, and the space X {\displaystyle X} involved in the definition is actually proper.

Examples

CAT(0) groups

Non-CAT(0) groups

  • Mapping class groups of closed surfaces with genus 3 {\displaystyle \geq 3} , or surfaces with genus 2 {\displaystyle \geq 2} and nonempty boundary or at least two punctures, are not CAT(0).
  • Some free-by-cyclic groups cannot act properly by isometries on a CAT(0) space, although they have quadratic isoperimetric inequality.
  • Automorphism groups of free groups of rank 3 {\displaystyle \geq 3} have exponential Dehn function, and hence (see below) are not CAT(0).

Properties

Properties of the group

Let G {\displaystyle G} be a CAT(0) group. Then:

  • There are finitely many conjugacy classes of finite subgroups in G {\displaystyle G} . In particular, there is a bound for cardinals of finite subgroups of G {\displaystyle G} .
  • The solvable subgroup theorem: any solvable subgroup of G {\displaystyle G} is finitely generated and virtually free abelian. Moreover, there is a finite bound on the rank of free abelian subgroups of G {\displaystyle G} .
  • If G {\displaystyle G} is infinite, then G {\displaystyle G} contains an element of infinite order.
  • If A {\displaystyle A} is a free abelian subgroup of G {\displaystyle G} and C {\displaystyle C} is a finitely generated subgroup of G {\displaystyle G} containing A {\displaystyle A} in its center, then a finite index subgroup D {\displaystyle D} of C {\displaystyle C} splits as a direct product D A × B {\displaystyle D\cong A\times B} .
  • The Dehn function of G {\displaystyle G} is at most quadratic.
  • G {\displaystyle G} has a finite presentation with solvable word problem and conjugacy problem.

Properties of the action

This section needs expansion. You can help by adding to it. (November 2024)

Let G {\displaystyle G} be a group acting properly cocompactly by isometries on a CAT(0) space X {\displaystyle X} .

  • Any finite subgroup of G {\displaystyle G} fixes a nonempty closed convex set.
  • For any infinite order element g G {\displaystyle g\in G} , the set min ( g ) {\displaystyle \min(g)} of elements x X {\displaystyle x\in X} such that d ( g x , x ) > 0 {\displaystyle d(g\cdot x,x)>0} is minimal is a nonempty, closed, convex, g {\displaystyle g} -invariant subset of X {\displaystyle X} , called the minimal set of g {\displaystyle g} . Moreover, it splits isometrically as a (l²) direct product min ( g ) = A × R {\displaystyle \min(g)=A\times \mathbb {R} } of a closed convex set A X {\displaystyle A\subset X} and a geodesic line, in such a way that g {\displaystyle g} acts trivially on the A {\displaystyle A} factor and by translation on the R {\displaystyle \mathbb {R} } factor. A geodesic line on which g {\displaystyle g} acts by translation is always of the form { a } × R {\displaystyle \{a\}\times \mathbb {R} } , a A {\displaystyle a\in A} , and is called an axis of g {\displaystyle g} . Such an element is called hyperbolic.
  • The flat torus theorem: any free abelian subgroup Z n A G {\displaystyle \mathbb {Z} ^{n}\cong A\subset G} leaves invariant a subspace F X {\displaystyle F\subset X} isometric to R n {\displaystyle \mathbb {R} ^{n}} , and A {\displaystyle A} acts cocompactly on F {\displaystyle F} (hence the quotient F / A {\displaystyle F/A} is a flat torus).
  • In certain situations, a splitting of G G 1 × G 2 {\displaystyle G\cong G_{1}\times G_{2}} as a cartesian product induces a splitting of the space X X 1 × X 2 {\displaystyle X\cong X_{1}\times X_{2}} and of the action.

References

  1. Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "Group Actions and Quasi-Isometries", Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 131–156, doi:10.1007/978-3-662-12494-9_8, ISBN 978-3-662-12494-9, retrieved 2024-11-19
  2. ^ Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "Mк-Polyhedral Complexes of Bounded Curvature", Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 205–227, doi:10.1007/978-3-662-12494-9_13, ISBN 978-3-662-12494-9, retrieved 2024-11-19
  3. Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "Gluing Constructions", Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 347–366, doi:10.1007/978-3-662-12494-9_19, ISBN 978-3-662-12494-9, retrieved 2024-11-19
  4. Niblo, G. A.; Reeves, L. D. (2003-01-27). "Coxeter Groups act on CAT(0) cube complexes". Journal of Group Theory. 6 (3). doi:10.1515/jgth.2003.028. ISSN 1433-5883. S2CID 17040423.
  5. Piggott, Adam; Ruane, Kim; Walsh, Genevieve (2010). "The automorphism group of the free group of rank 2 is a CAT(0) group". Michigan Mathematical Journal. 59 (2): 297–302. arXiv:0809.2034. doi:10.1307/mmj/1281531457. ISSN 0026-2285.
  6. Haettel, Thomas; Kielak, Dawid; Schwer, Petra (2016-06-01). "The 6-strand braid group is CAT(0)". Geometriae Dedicata. 182 (1): 263–286. arXiv:1304.5990. doi:10.1007/s10711-015-0138-9. ISSN 1572-9168.
  7. ^ Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "The Flat Torus Theorem", Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 244–259, doi:10.1007/978-3-662-12494-9_15, ISBN 978-3-662-12494-9, retrieved 2024-11-19
  8. Gersten, S. M. (1994). "The Automorphism Group of a Free Group Is Not a $\operatorname{Cat}(0)$ Group". Proceedings of the American Mathematical Society. 121 (4): 999–1002. doi:10.2307/2161207. ISSN 0002-9939. JSTOR 2161207.
  9. Bridson, Martin; Groves, Daniel (2010). "The quadratic isoperimetric inequality for mapping tori of free group automorphisms". Memoirs of the American Mathematical Society. 203 (955). arXiv:math/0610332. doi:10.1090/S0065-9266-09-00578-X. Retrieved 2024-11-19.
  10. Hatcher, Allen; Vogtmann, Karen (1996-04-01). "Isoperimetric inequalities for automorphism groups of free groups". Pacific Journal of Mathematics. 173 (2): 425–441. doi:10.2140/pjm.1996.173.425. ISSN 0030-8730.
  11. Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "Convexity and its Consequences", Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 175–183, doi:10.1007/978-3-662-12494-9_10, ISBN 978-3-662-12494-9, retrieved 2024-11-19
  12. Swenson, Eric L. (1999). "A cut point theorem for $\rm{CAT}(0)$ groups". Journal of Differential Geometry. 53 (2): 327–358. doi:10.4310/jdg/1214425538. ISSN 0022-040X.
  13. ^ Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "Isometries of CAT(0) Spaces", Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 228–243, doi:10.1007/978-3-662-12494-9_14, ISBN 978-3-662-12494-9, retrieved 2024-11-19
  14. ^ Bridson, Martin R.; Haefliger, André (1999), Bridson, Martin R.; Haefliger, André (eds.), "Non-Positive Curvature and Group Theory", Metric Spaces of Non-Positive Curvature, Berlin, Heidelberg: Springer, pp. 438–518, doi:10.1007/978-3-662-12494-9_22, ISBN 978-3-662-12494-9, retrieved 2024-11-19
Stub icon

This geometry-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: