Misplaced Pages

Carleman's inequality

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Carleman's inequality is an inequality in mathematics, named after Torsten Carleman, who proved it in 1923 and used it to prove the Denjoy–Carleman theorem on quasi-analytic classes.

Statement

Let a 1 , a 2 , a 3 , {\displaystyle a_{1},a_{2},a_{3},\dots } be a sequence of non-negative real numbers, then

n = 1 ( a 1 a 2 a n ) 1 / n e n = 1 a n . {\displaystyle \sum _{n=1}^{\infty }\left(a_{1}a_{2}\cdots a_{n}\right)^{1/n}\leq \mathrm {e} \sum _{n=1}^{\infty }a_{n}.}

The constant e {\displaystyle \mathrm {e} } (euler number) in the inequality is optimal, that is, the inequality does not always hold if e {\displaystyle \mathrm {e} } is replaced by a smaller number. The inequality is strict (it holds with "<" instead of "≤") if some element in the sequence is non-zero.

Integral version

Carleman's inequality has an integral version, which states that

0 exp { 1 x 0 x ln f ( t ) d t } d x e 0 f ( x ) d x {\displaystyle \int _{0}^{\infty }\exp \left\{{\frac {1}{x}}\int _{0}^{x}\ln f(t)\,\mathrm {d} t\right\}\,\mathrm {d} x\leq \mathrm {e} \int _{0}^{\infty }f(x)\,\mathrm {d} x}

for any f ≥ 0.

Carleson's inequality

A generalisation, due to Lennart Carleson, states the following:

for any convex function g with g(0) = 0, and for any -1 < p < ∞,

0 x p e g ( x ) / x d x e p + 1 0 x p e g ( x ) d x . {\displaystyle \int _{0}^{\infty }x^{p}\mathrm {e} ^{-g(x)/x}\,\mathrm {d} x\leq \mathrm {e} ^{p+1}\int _{0}^{\infty }x^{p}\mathrm {e} ^{-g'(x)}\,\mathrm {d} x.}

Carleman's inequality follows from the case p = 0.

Proof

Direct proof

An elementary proof is sketched below. From the inequality of arithmetic and geometric means applied to the numbers 1 a 1 , 2 a 2 , , n a n {\displaystyle 1\cdot a_{1},2\cdot a_{2},\dots ,n\cdot a_{n}}

M G ( a 1 , , a n ) = M G ( 1 a 1 , 2 a 2 , , n a n ) ( n ! ) 1 / n M A ( 1 a 1 , 2 a 2 , , n a n ) ( n ! ) 1 / n {\displaystyle \mathrm {MG} (a_{1},\dots ,a_{n})=\mathrm {MG} (1a_{1},2a_{2},\dots ,na_{n})(n!)^{-1/n}\leq \mathrm {MA} (1a_{1},2a_{2},\dots ,na_{n})(n!)^{-1/n}}

where MG stands for geometric mean, and MA — for arithmetic mean. The Stirling-type inequality n ! 2 π n n n e n {\displaystyle n!\geq {\sqrt {2\pi n}}\,n^{n}\mathrm {e} ^{-n}} applied to n + 1 {\displaystyle n+1} implies

( n ! ) 1 / n e n + 1 {\displaystyle (n!)^{-1/n}\leq {\frac {\mathrm {e} }{n+1}}} for all n 1. {\displaystyle n\geq 1.}

Therefore,

M G ( a 1 , , a n ) e n ( n + 1 ) 1 k n k a k , {\displaystyle MG(a_{1},\dots ,a_{n})\leq {\frac {\mathrm {e} }{n(n+1)}}\,\sum _{1\leq k\leq n}ka_{k}\,,}

whence

n 1 M G ( a 1 , , a n ) e k 1 ( n k 1 n ( n + 1 ) ) k a k = e k 1 a k , {\displaystyle \sum _{n\geq 1}MG(a_{1},\dots ,a_{n})\leq \,\mathrm {e} \,\sum _{k\geq 1}{\bigg (}\sum _{n\geq k}{\frac {1}{n(n+1)}}{\bigg )}\,ka_{k}=\,\mathrm {e} \,\sum _{k\geq 1}\,a_{k}\,,}

proving the inequality. Moreover, the inequality of arithmetic and geometric means of n {\displaystyle n} non-negative numbers is known to be an equality if and only if all the numbers coincide, that is, in the present case, if and only if a k = C / k {\displaystyle a_{k}=C/k} for k = 1 , , n {\displaystyle k=1,\dots ,n} . As a consequence, Carleman's inequality is never an equality for a convergent series, unless all a n {\displaystyle a_{n}} vanish, just because the harmonic series is divergent.

By Hardy’s inequality

One can also prove Carleman's inequality by starting with Hardy's inequality

n = 1 ( a 1 + a 2 + + a n n ) p ( p p 1 ) p n = 1 a n p {\displaystyle \sum _{n=1}^{\infty }\left({\frac {a_{1}+a_{2}+\cdots +a_{n}}{n}}\right)^{p}\leq \left({\frac {p}{p-1}}\right)^{p}\sum _{n=1}^{\infty }a_{n}^{p}}

for the non-negative numbers a 1 {\displaystyle a_{1}} , a 2 {\displaystyle a_{2}} ,… and p > 1 {\displaystyle p>1} , replacing each a n {\displaystyle a_{n}} with a n 1 / p {\displaystyle a_{n}^{1/p}} , and letting p {\displaystyle p\to \infty } .

Versions for specific sequences

Christian Axler and Mehdi Hassani investigated Carleman's inequality for the specific cases of a i = p i {\displaystyle a_{i}=p_{i}} where p i {\displaystyle p_{i}} is the i {\displaystyle i} th prime number. They also investigated the case where a i = 1 p i {\displaystyle a_{i}={\frac {1}{p_{i}}}} . They found that if a i = p i {\displaystyle a_{i}=p_{i}} one can replace e {\displaystyle e} with 1 e {\displaystyle {\frac {1}{e}}} in Carleman's inequality, but that if a i = 1 p i {\displaystyle a_{i}={\frac {1}{p_{i}}}} then e {\displaystyle e} remained the best possible constant.

Notes

  1. T. Carleman, Sur les fonctions quasi-analytiques, Conférences faites au cinquième congres des mathématiciens Scandinaves, Helsinki (1923), 181-196.
  2. Duncan, John; McGregor, Colin M. (2003). "Carleman's inequality". Amer. Math. Monthly. 110 (5): 424–431. doi:10.2307/3647829. MR 2040885.
  3. Pečarić, Josip; Stolarsky, Kenneth B. (2001). "Carleman's inequality: history and new generalizations". Aequationes Mathematicae. 61 (1–2): 49–62. doi:10.1007/s000100050160. MR 1820809.
  4. Carleson, L. (1954). "A proof of an inequality of Carleman" (PDF). Proc. Amer. Math. Soc. 5: 932–933. doi:10.1090/s0002-9939-1954-0065601-3.
  5. Hardy, G. H.; Littlewood, J.E.; Pólya, G. (1952). Inequalities (Second ed.). Cambridge, UK.{{cite book}}: CS1 maint: location missing publisher (link)
  6. Christian Axler, Medhi Hassani. "Carleman's Inequality over prime numbers" (PDF). Integers. 21, Article A53. Retrieved 13 November 2022.

References

  • Hardy, G. H.; Littlewood J.E.; Pólya, G. (1952). Inequalities, 2nd ed. Cambridge University Press. ISBN 0-521-35880-9.
  • Rassias, Thermistocles M., ed. (2000). Survey on classical inequalities. Kluwer Academic. ISBN 0-7923-6483-X.
  • Hörmander, Lars (1990). The analysis of linear partial differential operators I: distribution theory and Fourier analysis, 2nd ed. Springer. ISBN 3-540-52343-X.

External links

Categories:
Carleman's inequality Add topic