Misplaced Pages

Ceylonite

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (December 2014) (Learn how and when to remove this message)
Ceylonite
General
CategoryOxide minerals
Spinel group
Spinel structural group
Formula
(repeating unit)
(Mg,Fe)Al2O4
Crystal systemIsometric
Identification
ColorVarious; red to blue to mauve, dark green, brown, black
Crystal habitCubic, octahedral
CleavageIndistinct
FractureConchoidal, uneven
Mohs scale hardness7.5–8.0
LusterVitreous
StreakWhite
DiaphaneityTransparent to translucent
Specific gravity3.6–3.9
Optical propertiesIsotropic
Refractive index1.770-1.780
PleochroismAbsent
Solubilitynone
Other characteristicsNonmagnetic, non-radioactive, sometimes fluorescent (red)

Ceylonite (first cited 1793) and pleonaste (first cited 1801) or pleonast are dingy blue or grey to black varieties of spinel. Ceylonite, named for the island of Ceylon, is a ferroan spinel with Mg:Fe from 3:1 and 1:1, and little or no ferric iron. Pleonaste is named from the Greek for 'abundant,' for its many crystal forms, and is distinguished chemically by low Mg:Fe ratios of approximately 1:3. It is sometimes used as a gemstone.

Composition

The mineral ceylonite has the chemical composition of (Mg, Fe) Al2O4, putting it into a group of minerals known as the spinel group, or the oxide spinels. The oxide spinels have a formula of the model 2O4; where is commonly Fe, Mg, or Mn, and is Fe, Al, or Cr. It is an iron-rich variety of the spinel mineral species.

Structure

Ceylonite has the structural formula Al2O4, where cation is Mg or Fe. This formula creates a face centered cubic Bravais lattice, with a space group of Fd3m. The point symmetry can be three possibilities; 4*3m, 3*m, or mm. Within the oxygen sub-lattice of ceylonite, the Mg ions occupy tetrahedral 4c symmetry positions, and the Al ions occupy octahedral 8f site. This allows for the remaining octahedral site to be open for defects, causing a variety in structure and physical properties.

Ceylonite can actually undergo a solid solution series in which the composition changes, but it is still ceylonite. Magnesium rich ceylonite can undergo an increase in iron that will replace the magnesium cation in the A-block, therefore making the new composition FeAl2O4. The chemistry changes, but the mineral technically remains ceylonite.

Occurrence

The ceylonite first discovered on the island of Ceylon, modern day Sri Lanka, was found imbedded in calcareous spar, and accompanied by pyrite and micas. The crystals were located in a low lying dried up river, and were relatively shallow in the soil; 8 to 10 inches. On one side of the bank a mass of gneiss was exposed, on the other, a graphic granite vein.

The grains in the first discovered ceylonite looked of compacted soils, leading one to believe they were perhaps sedimentary in formation. This was an early hypothesis, and did not hold true after further analysis.

The Mg-ceylonite has a much more reliable study of its geological occurrence. It is found in Mg and Al rich igneous rocks, as well as, metamorphic rock. Like many rocks and mineral, ceylonite is weathered and can be found in sedimentary rocks.

History

Ceylonite and pleonaste are historical terms in mineralogy. Nevertheless, both terms are used in the current mineralogical literature.

References

  1. Gribble, C.D. (1988). The non-silicate minerals. In: Rutley’s Elements of Mineralogy. Springer, Dordrecht. P. 281. https://doi.org/10.1007/978-94-011-6832-8_8
  2. Precious stones and gems, their history and distinguishing characteristics By Edwin William Streeter, p.33-34
  • Ball, J.A., Murphy, S.T., Grimes, R.W., Bacorisen, D., Smith, R., Uberuaga, B.P., Sickafus, K.E., June 2008, Defect processes in MgAl2O4 spinel, Solid State Sciences, 10, 6, 717-724.
  • Desa, M., Ramana, M.V., Ramprasad, T., 30 June 2006, Seafloor spreading magnetic anomalies south off Sri Lanka, Marine Geology, 229, 34, 227-240.
  • King, R. J. (2004). Minerals explained 40: The spinels. Geology Today, 20(5), 194-200.
  • Sickafus, K. E., Wills, J. M. and Grimes, N. W. (1999), Structure of Spinel. Journal of the American Ceramic Society.
  • Skeen, George J.A. (1887) Journal of the Ceylon Branch of the Royal Asiatic Society, Volume IL-Part L No. 4, 97-98
  • Spinels, 1992, Physics and Chemistry of the Earth, 18, 105-125.
  • Gemdat ceylonite
  • Mindat ceylonite
  • Mindat pleonaste
Category: