Misplaced Pages

Chebyshev iteration

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In numerical linear algebra, the Chebyshev iteration is an iterative method for determining the solutions of a system of linear equations. The method is named after Russian mathematician Pafnuty Chebyshev.

Chebyshev iteration avoids the computation of inner products as is necessary for the other nonstationary methods. For some distributed-memory architectures these inner products are a bottleneck with respect to efficiency. The price one pays for avoiding inner products is that the method requires enough knowledge about spectrum of the coefficient matrix A, that is an upper estimate for the upper eigenvalue and lower estimate for the lower eigenvalue. There are modifications of the method for nonsymmetric matrices A.

Example code in MATLAB

function  = SolChebyshev002(A, b, x0, iterNum, lMax, lMin)
  d = (lMax + lMin) / 2;
  c = (lMax - lMin) / 2;
  preCond = eye(size(A)); % Preconditioner
  x = x0;
  r = b - A * x;
  for i = 1:iterNum % size(A, 1)
      z = linsolve(preCond, r);
      if (i == 1)
          p = z;
          alpha = 1/d;
      else if (i == 2)
          beta = (1/2) * (c * alpha)^2
          alpha = 1/(d - beta / alpha);
          p = z + beta * p;
      else
          beta = (c * alpha / 2)^2;
          alpha = 1/(d - beta / alpha);
          p = z + beta * p;
      end;
      x = x + alpha * p;
      r = b - A * x; %(= r - alpha * A * p)
      if (norm(r) < 1e-15), break; end; % stop if necessary
  end;
end

Code translated from and.

See also

References

  1. Barrett, Richard; Michael, Berry; Tony, Chan; Demmel, James; Donato, June; Dongarra, Jack; Eijkhout, Victor; Pozo, Roldan; Romine, Charles; Van der Vorst, Henk (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (2nd ed.). SIAM.
  2. Gutknecht, Martin; Röllin, Stefan (2002). "The Chebyshev iteration revisited". Parallel Computing. 28 (2): 263–283. doi:10.1016/S0167-8191(01)00139-9. hdl:20.500.11850/145926.

External links

Numerical linear algebra
Key concepts
Problems
Hardware
Software
Categories:
Chebyshev iteration Add topic