Misplaced Pages

Circle criterion

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In nonlinear control and stability theory, the circle criterion is a stability criterion for nonlinear time-varying systems. It can be viewed as a generalization of the Nyquist stability criterion for linear time-invariant (LTI) systems.

Overview

Consider a linear system subject to non-linear feedback, i.e., a nonlinear element φ ( v , t ) {\displaystyle \varphi (v,t)} is present in the feedback loop. Assume that the element satisfies a sector condition [ μ 1 , μ 2 ] {\displaystyle } , and (to keep things simple) that the open loop system is stable. Then the closed loop system is globally asymptotically stable if the Nyquist locus does not penetrate the circle having as diameter the segment [ 1 / μ 1 , 1 / μ 2 ] {\displaystyle } located on the x-axis.

General description

Consider the nonlinear system

x ˙ = A x + B w , {\displaystyle {\dot {\mathbf {x} }}=\mathbf {Ax} +\mathbf {Bw} ,}
v = C x , {\displaystyle \mathbf {v} =\mathbf {Cx} ,}
w = φ ( v , t ) . {\displaystyle \mathbf {w} =\varphi (v,t).}

Suppose that

  1. μ 1 v φ ( v , t ) μ 2 v ,   v , t {\displaystyle \mu _{1}v\leq \varphi (v,t)\leq \mu _{2}v,\ \forall v,t}
  2. det ( i ω I n A ) 0 ,   ω R 1  and  μ 0 [ μ 1 , μ 2 ] : A + μ 0 B C {\displaystyle \det(i\omega I_{n}-A)\neq 0,\ \forall \omega \in R^{-1}{\text{ and }}\exists \mu _{0}\in \,:\,A+\mu _{0}BC} is stable
  3. [ ( μ 2 C ( i ω I n A ) 1 B 1 ) ( 1 μ 1 C ( i ω I n A ) 1 B ) ] < 0   ω R 1 . {\displaystyle \Re \left<0\ \forall \omega \in R^{-1}.}

Then c > 0 , δ > 0 {\displaystyle \exists c>0,\delta >0} such that for any solution of the system, the following relation holds:

| x ( t ) | c e δ t | x ( 0 ) | ,   t 0. {\displaystyle |x(t)|\leq ce^{-\delta t}|x(0)|,\ \forall t\geq 0.}

Condition 3 is also known as the frequency condition. Condition 1 is the sector condition.

External links

References

  • Haddad, Wassim M.; Chellaboina, VijaySekhar (2011). Nonlinear Dynamical Systems and Control: a Lyapunov-Based Approach. Princeton University Press. ISBN 9781400841042.
Categories: