Misplaced Pages

Cone sheet

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
A cone sheet at Mingary, Ardnamurchan, Scotland
Closer view of a cone sheet at Mingary, Ardnamurchan
Tejeda cone sheets on Gran Canaria. The lower two-thirds of the photo shows the Tejeda cone sheet swarm of Miocene age; the cone sheets dip down towards the bottom left. The cone sheets are overlain by Pliocene flat-lying lava flows and pyroclastic rocks.

A cone sheet is a type of high-level igneous intrusion of subvolcanic rock, found in partly eroded central volcanic complexes. Cone sheets are relatively thin inclined sheets, generally just a few metres thick, with the geometry of a downward-pointing cone. Viewed from above, their outcrop is typically circular to elliptical. They were originally described from the Ardnamurchan, Mull and other central complexes of the British Tertiary Volcanic Province (now recognised as part of the North Atlantic Igneous Province).

Occurrence

Cone sheets are widely distributed at the lower levels of volcanic complexes.

Examples of cone sheet complexes
Name Location Age Dominant rock type Reference
Ardnamurchan Scotland Paleogene dolerite
Tejeda Gran Canaria Miocene trachyte, phonolite
Vallehermoso La Gomera Miocene trachyte, phonolite
Jabal Arknu Libya Tertiary
Otoge Japan Miocene alkali basalt, trachyandesite
Zarza Mexico Cretaceous gabbro
Houshihushan China Cretaceous granite porphyry
Boa Vista Cape Verde Miocene phonolite
Ruri Hills Kenya Miocene carbonatite
Bagstowe Queensland late Paleozoic rhyolite
Thverartindur Iceland Pliocene
Tehilla Sudan CambrianOrdovician granite, monzonite

Formation

Soon after cone sheets were first described, their formation was explained in terms of intrusion along conical fractures extending from the top of an intrusive body into the overlying rocks, caused by high magmatic pressure.

References

  1. Carracedo, J.C.; Troll, V.R. (2016). The Geology of the Canary Islands. Amsterdam: Elsevier. p. 433, figure 6.80. ISBN 978-0-12-809663-5.
  2. Geldmacher, Jörg; Haase, Karsten M.; Devey, Colin W.; Garbe-Schönberg, C. Dieter (1998). "The petrogenesis of Tertiary cone-sheets in Ardnamurchan, NW Scotland: petrological and geochemical constraints on crustal contamination and partial melting". Contributions to Mineralogy and Petrology. 131 (2–3): 196–209. doi:10.1007/s004100050388.
  3. Geldmacher, J.; Troll, V. R.; Emeleus, C. H.; Donaldson, C. H. (May 2002). "Pb-isotope evidence for contrasting crustal contamination of primitive to evolved magmas from Ardnamurchan and Rum: implications for the structure of the underlying crust". Scottish Journal of Geology. 38 (1): 55–61. doi:10.1144/sjg38010055. ISSN 0036-9276.
  4. Schirnick, C.; van den Bogaard, P.; Schminke, H.-U. (1999). "Cone sheet formation and intrusive growth of an oceanic island—The Miocene Tejeda complex on Gran Canaria (Canary Islands)". Geology. 27 (3): 207–210. doi:10.1130/0091-7613(1999)027<0207:CSFAIG>2.3.CO;2.
  5. Rodriguez-Losada, J.A.; Martinez-Frias, J. (2004). "The felsic complex of the Vallehermoso Caldera: interior of an ancient volcanic system (La Gomera, Canary Islands)". Journal of Volcanology and Geothermal Research. 137 (4): 261–284. doi:10.1016/j.jvolgeores.2004.05.021.
  6. Tawadros, E. Edward (2011). Geology of North Africa. Boca Raton: CRC Press. p. 79. ISBN 9780415874205.
  7. Geshi, N. (2005). "Structural development of dike swarms controlled by the change of magma supply rate: the cone sheets and parallel dike swarms of the Miocene Otoge igneous complex, Central Japan". Journal of Volcanology and Geothermal Research. 141 (3–4): 267–281. doi:10.1016/j.jvolgeores.2004.11.002.
  8. Johnson, S. E.; Paterson, S. R.; Tate, M. C. (1999). "Structure and emplacement history of a multiple-center, cone-sheet–bearing ring complex: The Zarza Intrusive Complex, Baja California, Mexico". Geological Society of America Bulletin. 111 (4): 607–619. doi:10.1130/0016-7606(1999)111<0607:SAEHOA>2.3.CO;2.
  9. Wen, X.; Ma, C.; Mason, R.; Sang, L.; Zhao, J. (2015). "Subterranean origin of accreted lapilli in cone-sheets of the houshihushan sub-volcanic ring complex, Shanhaiguan, China". Journal of Earth Science. 26 (5): 661–668. doi:10.1007/s12583-015-0581-4.
  10. Ancochea, Eumenio; Huertas, María José; Hernán, Francisco; Brändle, José Luis (2014). "A new felsic cone-sheet swarm in the Central Atlantic Islands: The cone-sheet swarm of Boa Vista (Cape Verde)". Journal of Volcanology and Geothermal Research. 274: 1–15. doi:10.1016/j.jvolgeores.2014.01.010.
  11. King, B. C.; Le Bas, M. J.; Sutherland, D. S. (1972). "The history of the alkaline volcanoes and intrusive complexes of eastern Uganda and western Kenya". Journal of the Geological Society. 128 (2): 173–205. doi:10.1144/gsjgs.128.2.0173.
  12. Branch, C.D. (1959). Progress Report on Upper Palaeozoic Intrusions Controlled by Ring Fractures near Kidston, North Queensland (PDF). Bureau of Mineral Resources Geology and Geophysics, Department of National Development, Commonwealth of Australia.
  13. Klausen, M.B. (2004). "Geometry and mode of emplacement of the Thverartindur cone sheet swarm, SE Iceland". Journal of Volcanology and Geothermal Research. 138 (3–4): 185–204. doi:10.1016/j.jvolgeores.2004.05.022.
  14. Ahmed, F. (1977). "Petrology and Evolution of the Tehilla Igneous Complex, Sudan". Journal of Geology. 85 (3): 331–343. doi:10.1086/628303.
  15. Walter, Thomas R.; Troll, Valentin R. (2001-06-01). "Formation of caldera periphery faults: an experimental study". Bulletin of Volcanology. 63 (2): 191. doi:10.1007/s004450100135. ISSN 1432-0819.
  16. Magee C.; Stevenson C.; O'Driscoll B.; Schofield N.; McDermott K. (2012). "An alternative emplacement model for the classic Ardnamurchan cone sheet swarm, NW Scotland, involving lateral magma supply via regional dykes" (PDF). Journal of Structural Geology. 44: 73–91. doi:10.1016/j.jsg.2012.08.004.
Category: