In algebra , the continuant is a multivariate polynomial representing the determinant of a tridiagonal matrix and having applications in continued fractions .
Definition
The n -th continuant
K
n
(
x
1
,
x
2
,
…
,
x
n
)
{\displaystyle K_{n}(x_{1},\;x_{2},\;\ldots ,\;x_{n})}
is defined recursively by
K
0
=
1
;
{\displaystyle K_{0}=1;\,}
K
1
(
x
1
)
=
x
1
;
{\displaystyle K_{1}(x_{1})=x_{1};\,}
K
n
(
x
1
,
x
2
,
…
,
x
n
)
=
x
n
K
n
−
1
(
x
1
,
x
2
,
…
,
x
n
−
1
)
+
K
n
−
2
(
x
1
,
x
2
,
…
,
x
n
−
2
)
.
{\displaystyle K_{n}(x_{1},\;x_{2},\;\ldots ,\;x_{n})=x_{n}K_{n-1}(x_{1},\;x_{2},\;\ldots ,\;x_{n-1})+K_{n-2}(x_{1},\;x_{2},\;\ldots ,\;x_{n-2}).\,}
Properties
The continuant
K
n
(
x
1
,
x
2
,
…
,
x
n
)
{\displaystyle K_{n}(x_{1},\;x_{2},\;\ldots ,\;x_{n})}
can be computed by taking the sum of all possible products of x 1 ,...,x n , in which any number of disjoint pairs of consecutive terms are deleted (Euler's rule ). For example,
K
5
(
x
1
,
x
2
,
x
3
,
x
4
,
x
5
)
=
x
1
x
2
x
3
x
4
x
5
+
x
3
x
4
x
5
+
x
1
x
4
x
5
+
x
1
x
2
x
5
+
x
1
x
2
x
3
+
x
1
+
x
3
+
x
5
.
{\displaystyle K_{5}(x_{1},\;x_{2},\;x_{3},\;x_{4},\;x_{5})=x_{1}x_{2}x_{3}x_{4}x_{5}\;+\;x_{3}x_{4}x_{5}\;+\;x_{1}x_{4}x_{5}\;+\;x_{1}x_{2}x_{5}\;+\;x_{1}x_{2}x_{3}\;+\;x_{1}\;+\;x_{3}\;+\;x_{5}.}
It follows that continuants are invariant with respect to reversing the order of indeterminates:
K
n
(
x
1
,
…
,
x
n
)
=
K
n
(
x
n
,
…
,
x
1
)
.
{\displaystyle K_{n}(x_{1},\;\ldots ,\;x_{n})=K_{n}(x_{n},\;\ldots ,\;x_{1}).}
The continuant can be computed as the determinant of a tridiagonal matrix :
K
n
(
x
1
,
x
2
,
…
,
x
n
)
=
det
(
x
1
1
0
⋯
0
−
1
x
2
1
⋱
⋮
0
−
1
⋱
⋱
0
⋮
⋱
⋱
⋱
1
0
⋯
0
−
1
x
n
)
.
{\displaystyle K_{n}(x_{1},\;x_{2},\;\ldots ,\;x_{n})=\det {\begin{pmatrix}x_{1}&1&0&\cdots &0\\-1&x_{2}&1&\ddots &\vdots \\0&-1&\ddots &\ddots &0\\\vdots &\ddots &\ddots &\ddots &1\\0&\cdots &0&-1&x_{n}\end{pmatrix}}.}
K
n
(
1
,
…
,
1
)
=
F
n
+
1
{\displaystyle K_{n}(1,\;\ldots ,\;1)=F_{n+1}}
, the (n +1)-st Fibonacci number .
K
n
(
x
1
,
…
,
x
n
)
K
n
−
1
(
x
2
,
…
,
x
n
)
=
x
1
+
K
n
−
2
(
x
3
,
…
,
x
n
)
K
n
−
1
(
x
2
,
…
,
x
n
)
.
{\displaystyle {\frac {K_{n}(x_{1},\;\ldots ,\;x_{n})}{K_{n-1}(x_{2},\;\ldots ,\;x_{n})}}=x_{1}+{\frac {K_{n-2}(x_{3},\;\ldots ,\;x_{n})}{K_{n-1}(x_{2},\;\ldots ,\;x_{n})}}.}
Ratios of continuants represent (convergents to) continued fractions as follows:
K
n
(
x
1
,
…
,
x
n
)
K
n
−
1
(
x
2
,
…
,
x
n
)
=
[
x
1
;
x
2
,
…
,
x
n
]
=
x
1
+
1
x
2
+
1
x
3
+
…
.
{\displaystyle {\frac {K_{n}(x_{1},\;\ldots ,x_{n})}{K_{n-1}(x_{2},\;\ldots ,\;x_{n})}}==x_{1}+{\frac {1}{\displaystyle {x_{2}+{\frac {1}{x_{3}+\ldots }}}}}.}
The following matrix identity holds:
(
K
n
(
x
1
,
…
,
x
n
)
K
n
−
1
(
x
1
,
…
,
x
n
−
1
)
K
n
−
1
(
x
2
,
…
,
x
n
)
K
n
−
2
(
x
2
,
…
,
x
n
−
1
)
)
=
(
x
1
1
1
0
)
×
…
×
(
x
n
1
1
0
)
{\displaystyle {\begin{pmatrix}K_{n}(x_{1},\;\ldots ,\;x_{n})&K_{n-1}(x_{1},\;\ldots ,\;x_{n-1})\\K_{n-1}(x_{2},\;\ldots ,\;x_{n})&K_{n-2}(x_{2},\;\ldots ,\;x_{n-1})\end{pmatrix}}={\begin{pmatrix}x_{1}&1\\1&0\end{pmatrix}}\times \ldots \times {\begin{pmatrix}x_{n}&1\\1&0\end{pmatrix}}}
.
For determinants, it implies that
K
n
(
x
1
,
…
,
x
n
)
⋅
K
n
−
2
(
x
2
,
…
,
x
n
−
1
)
−
K
n
−
1
(
x
1
,
…
,
x
n
−
1
)
⋅
K
n
−
1
(
x
2
,
…
,
x
n
)
=
(
−
1
)
n
.
{\displaystyle K_{n}(x_{1},\;\ldots ,\;x_{n})\cdot K_{n-2}(x_{2},\;\ldots ,\;x_{n-1})-K_{n-1}(x_{1},\;\ldots ,\;x_{n-1})\cdot K_{n-1}(x_{2},\;\ldots ,\;x_{n})=(-1)^{n}.}
and also
K
n
−
1
(
x
2
,
…
,
x
n
)
⋅
K
n
+
2
(
x
1
,
…
,
x
n
+
2
)
−
K
n
(
x
1
,
…
,
x
n
)
⋅
K
n
+
1
(
x
2
,
…
,
x
n
+
2
)
=
(
−
1
)
n
+
1
x
n
+
2
.
{\displaystyle K_{n-1}(x_{2},\;\ldots ,\;x_{n})\cdot K_{n+2}(x_{1},\;\ldots ,\;x_{n+2})-K_{n}(x_{1},\;\ldots ,\;x_{n})\cdot K_{n+1}(x_{2},\;\ldots ,\;x_{n+2})=(-1)^{n+1}x_{n+2}.}
Generalizations
A generalized definition takes the continuant with respect to three sequences a , b and c , so that K (n ) is a polynomial of a 1 ,...,a n , b 1 ,...,b n −1 and c 1 ,...,c n −1 . In this case the recurrence relation becomes
K
0
=
1
;
{\displaystyle K_{0}=1;\,}
K
1
=
a
1
;
{\displaystyle K_{1}=a_{1};\,}
K
n
=
a
n
K
n
−
1
−
b
n
−
1
c
n
−
1
K
n
−
2
.
{\displaystyle K_{n}=a_{n}K_{n-1}-b_{n-1}c_{n-1}K_{n-2}.\,}
Since b r and c r enter into K only as a product b r c r there is no loss of generality in assuming that the b r are all equal to 1.
The generalized continuant is precisely the determinant of the tridiagonal matrix
(
a
1
b
1
0
…
0
0
c
1
a
2
b
2
…
0
0
0
c
2
a
3
…
0
0
⋮
⋮
⋮
⋱
⋮
⋮
0
0
0
…
a
n
−
1
b
n
−
1
0
0
0
…
c
n
−
1
a
n
)
.
{\displaystyle {\begin{pmatrix}a_{1}&b_{1}&0&\ldots &0&0\\c_{1}&a_{2}&b_{2}&\ldots &0&0\\0&c_{2}&a_{3}&\ldots &0&0\\\vdots &\vdots &\vdots &\ddots &\vdots &\vdots \\0&0&0&\ldots &a_{n-1}&b_{n-1}\\0&0&0&\ldots &c_{n-1}&a_{n}\end{pmatrix}}.}
In Muir's book the generalized continuant is simply called continuant.
References
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑