Algebraic structure → Group theory Group theory | ||||||
---|---|---|---|---|---|---|
Basic notions
|
||||||
Finite groups
|
||||||
Modular groups
|
||||||
Topological and Lie groups
|
||||||
Algebraic groups | ||||||
In the area of modern algebra known as group theory, the Conway group Co2 is a sporadic simple group of order
- 42,305,421,312,000
- = 2 · 3 · 5 · 7 · 11 · 23
- ≈ 4×10.
History and properties
Co2 is one of the 26 sporadic groups and was discovered by (Conway 1968, 1969) as the group of automorphisms of the Leech lattice Λ fixing a lattice vector of type 2. It is thus a subgroup of Co0. It is isomorphic to a subgroup of Co1. The direct product 2×Co2 is maximal in Co0.
The Schur multiplier and the outer automorphism group are both trivial.
Representations
Co2 acts as a rank 3 permutation group on 2300 points. These points can be identified with planar hexagons in the Leech lattice having 6 type 2 vertices.
Co2 acts on the 23-dimensional even integral lattice with no roots of determinant 4, given as a sublattice of the Leech lattice orthogonal to a norm 4 vector. Over the field with 2 elements it has a 22-dimensional faithful representation; this is the smallest faithful representation over any field.
Feit (1974) showed that if a finite group has an absolutely irreducible faithful rational representation of dimension 23 and has no subgroups of index 23 or 24 then it is contained in either Z/2Z × Co2 or Z/2Z × Co3.
The Mathieu group M23 is isomorphic to a maximal subgroup of Co2 and one representation, in permutation matrices, fixes the type 2 vector u = (-3,1). A block sum ζ of the involution η =
and 5 copies of -η also fixes the same vector. Hence Co2 has a convenient matrix representation inside the standard representation of Co0. The trace of ζ is -8, while the involutions in M23 have trace 8.
A 24-dimensional block sum of η and -η is in Co0 if and only if the number of copies of η is odd.
Another representation fixes the vector v = (4,-4,0). A monomial and maximal subgroup includes a representation of M22:2, where any α interchanging the first 2 co-ordinates restores v by then negating the vector. Also included are diagonal involutions corresponding to octads (trace 8), 16-sets (trace -8), and dodecads (trace 0). It can be shown that Co2 has just 3 conjugacy classes of involutions. η leaves (4,-4,0,0) unchanged; the block sum ζ provides a non-monomial generator completing this representation of Co2.
There is an alternate way to construct the stabilizer of v. Now u and u+v = (1,-3,1) are vertices of a 2-2-2 triangle (vide infra). Then u, u+v, v, and their negatives form a coplanar hexagon fixed by ζ and M22; these generate a group Fi21 ≈ U6(2). α (vide supra) extends this to Fi21:2, which is maximal in Co2. Lastly, Co0 is transitive on type 2 points, so that a 23-cycle fixing u has a conjugate fixing v, and the generation is completed.
Maximal subgroups
Some maximal subgroups fix or reflect 2-dimensional sublattices of the Leech lattice. It is usual to define these planes by h-k-l triangles: triangles including the origin as a vertex, with edges (differences of vertices) being vectors of types h, k, and l.
Wilson (2009) found the 11 conjugacy classes of maximal subgroups of Co2 as follows:
No. | Structure | Order | Index | Comments |
---|---|---|---|---|
1 | Fi21:2 ≈ U6(2):2 | 18,393,661,440 = 2·3·5·7·11 |
2,300 = 2·5·23 |
symmetry/reflection group of coplanar hexagon of 6 type 2 points; fixes one hexagon in a rank 3 permutation representation of Co2 on 2300 such hexagons. Under this subgroup the hexagons are split into orbits of 1, 891, and 1408. Fi21 fixes a 2-2-2 triangle defining the plane. |
2 | 2:M22:2 | 908,328,960 = 2·3·5·7·11 |
46,575 = 3·5·23 |
has monomial representation described above; 2:M22 fixes a 2-2-4 triangle. |
3 | McL | 898,128,000 = 2·3·5·7·11 |
47,104 = 2·23 |
fixes a 2-2-3 triangle |
4 | 2 +:Sp6(2) |
743,178,240 = 2·3·5·7 |
56,925 = 3·5·11·23 |
centralizer of an involution of class 2A (trace -8) |
5 | HS:2 | 88,704,000 = 2·3·5·7·11 |
476,928 = 2·3·23 |
fixes a 2-3-3 triangle or exchanges its type 3 vertices with sign change |
6 | (2 × 2 +).A8 |
41,287,680 = 2·3·5·7 |
1,024,650 = 2·3·5·11·23 |
centralizer of an involution of class 2B |
7 | U4(3):D8 | 26,127,360 = 2·3·5·7 |
1,619,200 = 2·5·11·23 |
|
8 | 2.(S5 × S3) | 11,796,480 = 2·3·5 |
3,586,275 = 3·5·7·11·23 |
|
9 | M23 | 10,200,960 = 2·3·5·7·11·23 |
4,147,200 = 2·3·5 |
fixes a 2-3-4 triangle |
10 | 3 +.2 –.S5 |
933,120 = 2·3·5 |
45,337,600 = 2·5·7·11·23 |
normalizer of a subgroup of order 3 (class 3A) |
11 | 5 +:4S4 |
12,000 = 2·3·5 |
3,525,451,776 = 2·3·7·11·23 |
normalizer of a subgroup of order 5 (class 5A) |
Conjugacy classes
Traces of matrices in a standard 24-dimensional representation of Co2 are shown. The names of conjugacy classes are taken from the Atlas of Finite Group Representations.
Centralizers of unknown structure are indicated with brackets.
Class | Order of centralizer | Centralizer | Size of class | Trace | |
---|---|---|---|---|---|
1A | all Co2 | 1 | 24 | ||
2A | 743,178,240 | 2:Sp6(2) | 3·5·11·23 | -8 | |
2B | 41,287,680 | 2:2.A8 | 2·3·511·23 | 8 | |
2C | 1,474,560 | 2.A6.2 | 2·3·5·7·11·23 | 0 | |
3A | 466,560 | 32A5 | 2·5·7·11·23 | -3 | |
3B | 155,520 | 3×U4(2).2 | 2·3·5·7·11·23 | 6 | |
4A | 3,096,576 | 4.2.U3(3).2 | 2·3·5·11·23 | 8 | |
4B | 122,880 | S5 | 2·3·5·7·11·23 | -4 | |
4C | 73,728 | 2·3·5·7·11·23 | 4 | ||
4D | 49,152 | 2·3·5·7·11·23 | 0 | ||
4E | 6,144 | 2·3·5·7·11·23 | 4 | ||
4F | 6,144 | 2·3·5·7·11·23 | 0 | ||
4G | 1,280 | 2·3·5·7·11·23 | 0 | ||
5A | 3,000 | 52A4 | 2·3·7·11·23 | -1 | |
5B | 600 | 5×S5 | 2·3·5·7·11·23 | 4 | |
6A | 5,760 | 3.2A5 | 2·3·5·7·11·23 | 5 | |
6B | 5,184 | 2·3·5·7·11·23 | 1 | ||
6C | 4,320 | 6×S6 | 2·3·5·7·11·23 | 4 | |
6D | 3,456 | 2·3·5·7·11·23 | -2 | ||
6E | 576 | 2·3·5·7·11·23 | 2 | ||
6F | 288 | 2·3·5·7·11·23 | 0 | ||
7A | 56 | 7×D8 | 2·3·5·11·233 | 3 | |
8A | 768 | 2·3·5·7·11·23 | 0 | ||
8B | 768 | 2·3·5·7·11·23 | -2 | ||
8C | 512 | 2·3·5·7·11·23 | 4 | ||
8D | 512 | 2·3·5·7·11·23 | 0 | ||
8E | 256 | 2·3·5·7·11·23 | 2 | ||
8F | 64 | 2·3·5·7·11·23 | 2 | ||
9A | 54 | 9×S3 | 2·3·5·7·11·23 | 3 | |
10A | 120 | 5×2.A4 | 2·3·5·7·11·23 | 3 | |
10B | 60 | 10×S3 | 2·3·5·7·11·23 | 2 | |
10C | 40 | 5×D8 | 2·3·5·7·11·23 | 0 | |
11A | 11 | 11 | 2·3·5·7·23 | 2 | |
12A | 864 | 2·3·5·7·11·23 | -1 | ||
12B | 288 | 2·3·5·7·11·23 | 1 | ||
12C | 288 | 2·3·5·7·11·23 | 2 | ||
12D | 288 | 2·3·5·7·11·23 | -2 | ||
12E | 96 | 2·3·5·7·11·23 | 3 | ||
12F | 96 | 2·3·5·7·11·23 | 2 | ||
12G | 48 | 2·3·5·7·11·23 | 1 | ||
12H | 48 | 2·3·5·7·11·23 | 0 | ||
14A | 56 | 5×D8 | 2·3·5·11·23 | -1 | |
14B | 28 | 14×2 | 2·3·5·11·23 | 1 | power equivalent |
14C | 28 | 14×2 | 2·3·5·11·23 | 1 | |
15A | 30 | 30 | 2·3·5·7·11·23 | 1 | |
15B | 30 | 30 | 2·3·5·7·11·23 | 2 | power equivalent |
15C | 30 | 30 | 2·3·5·7·11·23 | 2 | |
16A | 32 | 16×2 | 2·3·5·7·11·23 | 2 | |
16B | 32 | 16×2 | 2·3·5·7·11·23 | 0 | |
18A | 18 | 18 | 2·3·5·7·11·23 | 1 | |
20A | 20 | 20 | 2·3·5·7·11·23 | 1 | |
20B | 20 | 20 | 2·3·5·7·11·23 | 0 | |
23A | 23 | 23 | 2·3·5·7·11 | 1 | power equivalent |
23B | 23 | 23 | 2·3·5·7·11 | 1 | |
24A | 24 | 24 | 2·3·5·7·11·23 | 0 | |
24B | 24 | 24 | 2·3·5·7·11·23 | 1 | |
28A | 28 | 28 | 2·3·5·11·23 | 1 | |
30A | 30 | 30 | 2·3·5·7·11·23 | -1 | |
30B | 30 | 30 | 2·3·5·7·11·23 | 0 | |
30C | 30 | 30 | 2·3·5·7·11·23 | 0 |
References
- Conway, John Horton (1968), "A perfect group of order 8,315,553,613,086,720,000 and the sporadic simple groups", Proceedings of the National Academy of Sciences of the United States of America, 61 (2): 398–400, Bibcode:1968PNAS...61..398C, doi:10.1073/pnas.61.2.398, MR 0237634, PMC 225171, PMID 16591697
- Conway, John Horton (1969), "A group of order 8,315,553,613,086,720,000", The Bulletin of the London Mathematical Society, 1: 79–88, doi:10.1112/blms/1.1.79, ISSN 0024-6093, MR 0248216
- Conway, John Horton (1971), "Three lectures on exceptional groups", in Powell, M. B.; Higman, Graham (eds.), Finite simple groups, Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969., Boston, MA: Academic Press, pp. 215–247, ISBN 978-0-12-563850-0, MR 0338152 Reprinted in Conway & Sloane (1999, 267–298)
- Conway, John Horton; Sloane, Neil J. A. (1999), Sphere Packings, Lattices and Groups, Grundlehren der Mathematischen Wissenschaften, vol. 290 (3rd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4757-2016-7, ISBN 978-0-387-98585-5, MR 0920369
- Feit, Walter (1974), "On integral representations of finite groups", Proceedings of the London Mathematical Society, Third Series, 29 (4): 633–683, doi:10.1112/plms/s3-29.4.633, ISSN 0024-6115, MR 0374248
- Thompson, Thomas M. (1983), From error-correcting codes through sphere packings to simple groups, Carus Mathematical Monographs, vol. 21, Mathematical Association of America, ISBN 978-0-88385-023-7, MR 0749038
- Conway, John Horton; Parker, Richard A.; Norton, Simon P.; Curtis, R. T.; Wilson, Robert A. (1985), Atlas of finite groups, Oxford University Press, ISBN 978-0-19-853199-9, MR 0827219
- Griess, Robert L. Jr. (1998), Twelve sporadic groups, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-662-03516-0, ISBN 978-3-540-62778-4, MR 1707296
- Wilson, Robert A. (1983), "The maximal subgroups of Conway's group ·2", Journal of Algebra, 84 (1): 107–114, doi:10.1016/0021-8693(83)90069-8, ISSN 0021-8693, MR 0716772
- Wilson, Robert A. (2009), The finite simple groups., Graduate Texts in Mathematics 251, vol. 251, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-84800-988-2, ISBN 978-1-84800-987-5, Zbl 1203.20012
- Specific
External links
- MathWorld: Conway Groups
- Atlas of Finite Group Representations: Co2 version 2
- Atlas of Finite Group Representations: Co2 version 3