Misplaced Pages

Conway group Co2

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Sporadic simple group For general background and history of the Conway sporadic groups, see Conway group.
Algebraic structureGroup theory
Group theory
Basic notions
Group homomorphisms
Finite groups
Classification of finite simple groups
Modular groups
  • PSL(2, Z {\displaystyle \mathbb {Z} } )
  • SL(2, Z {\displaystyle \mathbb {Z} } )
Topological and Lie groups Infinite dimensional Lie group
  • O(∞)
  • SU(∞)
  • Sp(∞)
Algebraic groups

In the area of modern algebra known as group theory, the Conway group Co2 is a sporadic simple group of order

   42,305,421,312,000
= 2 ···· 11 · 23
≈ 4×10.

History and properties

Co2 is one of the 26 sporadic groups and was discovered by (Conway 1968, 1969) as the group of automorphisms of the Leech lattice Λ fixing a lattice vector of type 2. It is thus a subgroup of Co0. It is isomorphic to a subgroup of Co1. The direct product 2×Co2 is maximal in Co0.

The Schur multiplier and the outer automorphism group are both trivial.

Representations

Co2 acts as a rank 3 permutation group on 2300 points. These points can be identified with planar hexagons in the Leech lattice having 6 type 2 vertices.

Co2 acts on the 23-dimensional even integral lattice with no roots of determinant 4, given as a sublattice of the Leech lattice orthogonal to a norm 4 vector. Over the field with 2 elements it has a 22-dimensional faithful representation; this is the smallest faithful representation over any field.

Feit (1974) showed that if a finite group has an absolutely irreducible faithful rational representation of dimension 23 and has no subgroups of index 23 or 24 then it is contained in either Z/2Z × Co2 or Z/2Z × Co3.

The Mathieu group M23 is isomorphic to a maximal subgroup of Co2 and one representation, in permutation matrices, fixes the type 2 vector u = (-3,1). A block sum ζ of the involution η =

1 / 2 ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) {\displaystyle {\mathbf {1} /2}\left({\begin{matrix}1&-1&-1&-1\\-1&1&-1&-1\\-1&-1&1&-1\\-1&-1&-1&1\end{matrix}}\right)}

and 5 copies of -η also fixes the same vector. Hence Co2 has a convenient matrix representation inside the standard representation of Co0. The trace of ζ is -8, while the involutions in M23 have trace 8.

A 24-dimensional block sum of η and -η is in Co0 if and only if the number of copies of η is odd.

Another representation fixes the vector v = (4,-4,0). A monomial and maximal subgroup includes a representation of M22:2, where any α interchanging the first 2 co-ordinates restores v by then negating the vector. Also included are diagonal involutions corresponding to octads (trace 8), 16-sets (trace -8), and dodecads (trace 0). It can be shown that Co2 has just 3 conjugacy classes of involutions. η leaves (4,-4,0,0) unchanged; the block sum ζ provides a non-monomial generator completing this representation of Co2.

There is an alternate way to construct the stabilizer of v. Now u and u+v = (1,-3,1) are vertices of a 2-2-2 triangle (vide infra). Then u, u+v, v, and their negatives form a coplanar hexagon fixed by ζ and M22; these generate a group Fi21 ≈ U6(2). α (vide supra) extends this to Fi21:2, which is maximal in Co2. Lastly, Co0 is transitive on type 2 points, so that a 23-cycle fixing u has a conjugate fixing v, and the generation is completed.

Maximal subgroups

Some maximal subgroups fix or reflect 2-dimensional sublattices of the Leech lattice. It is usual to define these planes by h-k-l triangles: triangles including the origin as a vertex, with edges (differences of vertices) being vectors of types h, k, and l.

Wilson (2009) found the 11 conjugacy classes of maximal subgroups of Co2 as follows:

Maximal subgroups of Co2
No. Structure Order Index Comments
1 Fi21:2 ≈ U6(2):2 18,393,661,440
= 2·3·5·7·11
2,300
= 2·5·23
symmetry/reflection group of coplanar hexagon of 6 type 2 points; fixes one hexagon in a rank 3 permutation representation of Co2 on 2300 such hexagons. Under this subgroup the hexagons are split into orbits of 1, 891, and 1408. Fi21 fixes a 2-2-2 triangle defining the plane.
2 2:M22:2 908,328,960
= 2·3·5·7·11
46,575
= 3·5·23
has monomial representation described above; 2:M22 fixes a 2-2-4 triangle.
3 McL 898,128,000
= 2·3·5·7·11
47,104
= 2·23
fixes a 2-2-3 triangle
4 2
+:Sp6(2)
743,178,240
= 2·3·5·7
56,925
= 3·5·11·23
centralizer of an involution of class 2A (trace -8)
5 HS:2 88,704,000
= 2·3·5·7·11
476,928
= 2·3·23
fixes a 2-3-3 triangle or exchanges its type 3 vertices with sign change
6 (2 × 2
+).A8
41,287,680
= 2·3·5·7
1,024,650
= 2·3·5·11·23
centralizer of an involution of class 2B
7 U4(3):D8 26,127,360
= 2·3·5·7
1,619,200
= 2·5·11·23
8 2.(S5 × S3) 11,796,480
= 2·3·5
3,586,275
= 3·5·7·11·23
9 M23 10,200,960
= 2·3·5·7·11·23
4,147,200
= 2·3·5
fixes a 2-3-4 triangle
10 3
+.2
 –.S5
933,120
= 2·3·5
45,337,600
= 2·5·7·11·23
normalizer of a subgroup of order 3 (class 3A)
11 5
+:4S4
12,000
= 2·3·5
3,525,451,776
= 2·3·7·11·23
normalizer of a subgroup of order 5 (class 5A)

Conjugacy classes

Traces of matrices in a standard 24-dimensional representation of Co2 are shown. The names of conjugacy classes are taken from the Atlas of Finite Group Representations.

Centralizers of unknown structure are indicated with brackets.

Class Order of centralizer Centralizer Size of class Trace
1A all Co2 1 24
2A 743,178,240 2:Sp6(2) 3·5·11·23 -8
2B 41,287,680 2:2.A8 2·3·511·23 8
2C 1,474,560 2.A6.2 2·3·5·7·11·23 0
3A 466,560 32A5 2·5·7·11·23 -3
3B 155,520 3×U4(2).2 2·3·5·7·11·23 6
4A 3,096,576 4.2.U3(3).2 2·3·5·11·23 8
4B 122,880 S5 2·3·5·7·11·23 -4
4C 73,728 2·3·5·7·11·23 4
4D 49,152 2·3·5·7·11·23 0
4E 6,144 2·3·5·7·11·23 4
4F 6,144 2·3·5·7·11·23 0
4G 1,280 2·3·5·7·11·23 0
5A 3,000 52A4 2·3·7·11·23 -1
5B 600 5×S5 2·3·5·7·11·23 4
6A 5,760 3.2A5 2·3·5·7·11·23 5
6B 5,184 2·3·5·7·11·23 1
6C 4,320 6×S6 2·3·5·7·11·23 4
6D 3,456 2·3·5·7·11·23 -2
6E 576 2·3·5·7·11·23 2
6F 288 2·3·5·7·11·23 0
7A 56 7×D8 2·3·5·11·233 3
8A 768 2·3·5·7·11·23 0
8B 768 2·3·5·7·11·23 -2
8C 512 2·3·5·7·11·23 4
8D 512 2·3·5·7·11·23 0
8E 256 2·3·5·7·11·23 2
8F 64 2·3·5·7·11·23 2
9A 54 9×S3 2·3·5·7·11·23 3
10A 120 5×2.A4 2·3·5·7·11·23 3
10B 60 10×S3 2·3·5·7·11·23 2
10C 40 5×D8 2·3·5·7·11·23 0
11A 11 11 2·3·5·7·23 2
12A 864 2·3·5·7·11·23 -1
12B 288 2·3·5·7·11·23 1
12C 288 2·3·5·7·11·23 2
12D 288 2·3·5·7·11·23 -2
12E 96 2·3·5·7·11·23 3
12F 96 2·3·5·7·11·23 2
12G 48 2·3·5·7·11·23 1
12H 48 2·3·5·7·11·23 0
14A 56 5×D8 2·3·5·11·23 -1
14B 28 14×2 2·3·5·11·23 1 power equivalent
14C 28 14×2 2·3·5·11·23 1
15A 30 30 2·3·5·7·11·23 1
15B 30 30 2·3·5·7·11·23 2 power equivalent
15C 30 30 2·3·5·7·11·23 2
16A 32 16×2 2·3·5·7·11·23 2
16B 32 16×2 2·3·5·7·11·23 0
18A 18 18 2·3·5·7·11·23 1
20A 20 20 2·3·5·7·11·23 1
20B 20 20 2·3·5·7·11·23 0
23A 23 23 2·3·5·7·11 1 power equivalent
23B 23 23 2·3·5·7·11 1
24A 24 24 2·3·5·7·11·23 0
24B 24 24 2·3·5·7·11·23 1
28A 28 28 2·3·5·11·23 1
30A 30 30 2·3·5·7·11·23 -1
30B 30 30 2·3·5·7·11·23 0
30C 30 30 2·3·5·7·11·23 0

References

Specific
  1. Wilson (1983)
  2. "ATLAS: Conway group Co2".

External links

Categories: