Misplaced Pages

Conway triangle notation

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Conway triangle notation" – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this message)

In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are a, b and c and whose corresponding internal angles are A, B, and C then the Conway triangle notation is simply represented as follows:

S = b c sin A = a c sin B = a b sin C {\displaystyle S=bc\sin A=ac\sin B=ab\sin C\,}

where S = 2 × area of reference triangle and

S φ = S cot φ . {\displaystyle S_{\varphi }=S\cot \varphi .\,}

in particular

S A = S cot A = b c cos A = b 2 + c 2 a 2 2 {\displaystyle S_{A}=S\cot A=bc\cos A={\frac {b^{2}+c^{2}-a^{2}}{2}}\,}
S B = S cot B = a c cos B = a 2 + c 2 b 2 2 {\displaystyle S_{B}=S\cot B=ac\cos B={\frac {a^{2}+c^{2}-b^{2}}{2}}\,}
S C = S cot C = a b cos C = a 2 + b 2 c 2 2 {\displaystyle S_{C}=S\cot C=ab\cos C={\frac {a^{2}+b^{2}-c^{2}}{2}}\,}
S ω = S cot ω = a 2 + b 2 + c 2 2 {\displaystyle S_{\omega }=S\cot \omega ={\frac {a^{2}+b^{2}+c^{2}}{2}}\,}      where ω {\displaystyle \omega \,} is the Brocard angle. The law of cosines is used: a 2 = b 2 + c 2 2 b c cos A {\displaystyle a^{2}=b^{2}+c^{2}-2bc\cos A} .
S π 3 = S cot π 3 = S 3 3 {\displaystyle S_{\frac {\pi }{3}}=S\cot {\frac {\pi }{3}}=S{\frac {\sqrt {3}}{3}}\,}
S 2 φ = S φ 2 S 2 2 S φ S φ 2 = S φ + S φ 2 + S 2 {\displaystyle S_{2\varphi }={\frac {S_{\varphi }^{2}-S^{2}}{2S_{\varphi }}}\quad \quad S_{\frac {\varphi }{2}}=S_{\varphi }+{\sqrt {S_{\varphi }^{2}+S^{2}}}\,}    for values of   φ {\displaystyle \varphi }   where   0 < φ < π {\displaystyle 0<\varphi <\pi \,}
S ϑ + φ = S ϑ S φ S 2 S ϑ + S φ S ϑ φ = S ϑ S φ + S 2 S φ S ϑ . {\displaystyle S_{\vartheta +\varphi }={\frac {S_{\vartheta }S_{\varphi }-S^{2}}{S_{\vartheta }+S_{\varphi }}}\quad \quad S_{\vartheta -\varphi }={\frac {S_{\vartheta }S_{\varphi }+S^{2}}{S_{\varphi }-S_{\vartheta }}}\,.}

Furthermore the convention uses a shorthand notation for S ϑ S φ = S ϑ φ {\displaystyle S_{\vartheta }S_{\varphi }=S_{\vartheta \varphi }\,} and S ϑ S φ S ψ = S ϑ φ ψ . {\displaystyle S_{\vartheta }S_{\varphi }S_{\psi }=S_{\vartheta \varphi \psi }\,.}

Hence:

sin A = S b c = S S A 2 + S 2 cos A = S A b c = S A S A 2 + S 2 tan A = S S A {\displaystyle \sin A={\frac {S}{bc}}={\frac {S}{\sqrt {S_{A}^{2}+S^{2}}}}\quad \quad \cos A={\frac {S_{A}}{bc}}={\frac {S_{A}}{\sqrt {S_{A}^{2}+S^{2}}}}\quad \quad \tan A={\frac {S}{S_{A}}}\,}
a 2 = S B + S C b 2 = S A + S C c 2 = S A + S B . {\displaystyle a^{2}=S_{B}+S_{C}\quad \quad b^{2}=S_{A}+S_{C}\quad \quad c^{2}=S_{A}+S_{B}\,.}

Some important identities:

cyclic S A = S A + S B + S C = S ω {\displaystyle \sum _{\text{cyclic}}S_{A}=S_{A}+S_{B}+S_{C}=S_{\omega }\,}
S 2 = b 2 c 2 S A 2 = a 2 c 2 S B 2 = a 2 b 2 S C 2 {\displaystyle S^{2}=b^{2}c^{2}-S_{A}^{2}=a^{2}c^{2}-S_{B}^{2}=a^{2}b^{2}-S_{C}^{2}\,}
S B C = S B S C = S 2 a 2 S A S A C = S A S C = S 2 b 2 S B S A B = S A S B = S 2 c 2 S C {\displaystyle S_{BC}=S_{B}S_{C}=S^{2}-a^{2}S_{A}\quad \quad S_{AC}=S_{A}S_{C}=S^{2}-b^{2}S_{B}\quad \quad S_{AB}=S_{A}S_{B}=S^{2}-c^{2}S_{C}\,}
S A B C = S A S B S C = S 2 ( S ω 4 R 2 ) S ω = s 2 r 2 4 r R {\displaystyle S_{ABC}=S_{A}S_{B}S_{C}=S^{2}(S_{\omega }-4R^{2})\quad \quad S_{\omega }=s^{2}-r^{2}-4rR\,}

where R is the circumradius and abc = 2SR and where r is the incenter,   s = a + b + c 2 {\displaystyle s={\frac {a+b+c}{2}}\,}    and   a + b + c = S r . {\displaystyle a+b+c={\frac {S}{r}}\,.}

Some useful trigonometric conversions:

sin A sin B sin C = S 4 R 2 cos A cos B cos C = S ω 4 R 2 4 R 2 {\displaystyle \sin A\sin B\sin C={\frac {S}{4R^{2}}}\quad \quad \cos A\cos B\cos C={\frac {S_{\omega }-4R^{2}}{4R^{2}}}}
cyclic sin A = S 2 R r = s R cyclic cos A = r + R R cyclic tan A = S S ω 4 R 2 = tan A tan B tan C . {\displaystyle \sum _{\text{cyclic}}\sin A={\frac {S}{2Rr}}={\frac {s}{R}}\quad \quad \sum _{\text{cyclic}}\cos A={\frac {r+R}{R}}\quad \quad \sum _{\text{cyclic}}\tan A={\frac {S}{S_{\omega }-4R^{2}}}=\tan A\tan B\tan C\,.}


Some useful formulas:

cyclic a 2 S A = a 2 S A + b 2 S B + c 2 S C = 2 S 2 cyclic a 4 = 2 ( S ω 2 S 2 ) {\displaystyle \sum _{\text{cyclic}}a^{2}S_{A}=a^{2}S_{A}+b^{2}S_{B}+c^{2}S_{C}=2S^{2}\quad \quad \sum _{\text{cyclic}}a^{4}=2(S_{\omega }^{2}-S^{2})\,}
cyclic S A 2 = S ω 2 2 S 2 cyclic S B C = cyclic S B S C = S 2 cyclic b 2 c 2 = S ω 2 + S 2 . {\displaystyle \sum _{\text{cyclic}}S_{A}^{2}=S_{\omega }^{2}-2S^{2}\quad \quad \sum _{\text{cyclic}}S_{BC}=\sum _{\text{cyclic}}S_{B}S_{C}=S^{2}\quad \quad \sum _{\text{cyclic}}b^{2}c^{2}=S_{\omega }^{2}+S^{2}\,.}

Some examples using Conway triangle notation:

Let D be the distance between two points P and Q whose trilinear coordinates are pa : pb : pc and qa : qb : qc. Let Kp = apa + bpb + cpc and let Kq = aqa + bqb + cqc. Then D is given by the formula:

D 2 = cyclic a 2 S A ( p a K p q a K q ) 2 . {\displaystyle D^{2}=\sum _{\text{cyclic}}a^{2}S_{A}\left({\frac {p_{a}}{K_{p}}}-{\frac {q_{a}}{K_{q}}}\right)^{2}\,.}

Using this formula it is possible to determine OH, the distance between the circumcenter and the orthocenter as follows:

For the circumcenter pa = aSA and for the orthocenter qa = SBSC/a

K p = cyclic a 2 S A = 2 S 2 K q = cyclic S B S C = S 2 . {\displaystyle K_{p}=\sum _{\text{cyclic}}a^{2}S_{A}=2S^{2}\quad \quad K_{q}=\sum _{\text{cyclic}}S_{B}S_{C}=S^{2}\,.}

Hence:

D 2 = cyclic a 2 S A ( a S A 2 S 2 S B S C a S 2 ) 2 = 1 4 S 4 cyclic a 4 S A 3 S A S B S C S 4 cyclic a 2 S A + S A S B S C S 4 cyclic S B S C = 1 4 S 4 cyclic a 2 S A 2 ( S 2 S B S C ) 2 ( S ω 4 R 2 ) + ( S ω 4 R 2 ) = 1 4 S 2 cyclic a 2 S A 2 S A S B S C S 4 cyclic a 2 S A ( S ω 4 R 2 ) = 1 4 S 2 cyclic a 2 ( b 2 c 2 S 2 ) 1 2 ( S ω 4 R 2 ) ( S ω 4 R 2 ) = 3 a 2 b 2 c 2 4 S 2 1 4 cyclic a 2 3 2 ( S ω 4 R 2 ) = 3 R 2 1 2 S ω 3 2 S ω + 6 R 2 = 9 R 2 2 S ω . {\displaystyle {\begin{aligned}D^{2}&{}=\sum _{\text{cyclic}}a^{2}S_{A}\left({\frac {aS_{A}}{2S^{2}}}-{\frac {S_{B}S_{C}}{aS^{2}}}\right)^{2}\\&{}={\frac {1}{4S^{4}}}\sum _{\text{cyclic}}a^{4}S_{A}^{3}-{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}+{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}S_{B}S_{C}\\&{}={\frac {1}{4S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}^{2}(S^{2}-S_{B}S_{C})-2(S_{\omega }-4R^{2})+(S_{\omega }-4R^{2})\\&{}={\frac {1}{4S^{2}}}\sum _{\text{cyclic}}a^{2}S_{A}^{2}-{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}-(S_{\omega }-4R^{2})\\&{}={\frac {1}{4S^{2}}}\sum _{\text{cyclic}}a^{2}(b^{2}c^{2}-S^{2})-{\frac {1}{2}}(S_{\omega }-4R^{2})-(S_{\omega }-4R^{2})\\&{}={\frac {3a^{2}b^{2}c^{2}}{4S^{2}}}-{\frac {1}{4}}\sum _{\text{cyclic}}a^{2}-{\frac {3}{2}}(S_{\omega }-4R^{2})\\&{}=3R^{2}-{\frac {1}{2}}S_{\omega }-{\frac {3}{2}}S_{\omega }+6R^{2}\\&{}=9R^{2}-2S_{\omega }.\end{aligned}}}

This gives:

O H = 9 R 2 2 S ω . {\displaystyle OH={\sqrt {9R^{2}-2S_{\omega }\,}}.}

References

Categories: