In geometry , the Conway triangle notation , named after John Horton Conway , allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are a , b and c and whose corresponding internal angles are A , B , and C then the Conway triangle notation is simply represented as follows:
S
=
b
c
sin
A
=
a
c
sin
B
=
a
b
sin
C
{\displaystyle S=bc\sin A=ac\sin B=ab\sin C\,}
where S = 2 × area of reference triangle and
S
φ
=
S
cot
φ
.
{\displaystyle S_{\varphi }=S\cot \varphi .\,}
in particular
S
A
=
S
cot
A
=
b
c
cos
A
=
b
2
+
c
2
−
a
2
2
{\displaystyle S_{A}=S\cot A=bc\cos A={\frac {b^{2}+c^{2}-a^{2}}{2}}\,}
S
B
=
S
cot
B
=
a
c
cos
B
=
a
2
+
c
2
−
b
2
2
{\displaystyle S_{B}=S\cot B=ac\cos B={\frac {a^{2}+c^{2}-b^{2}}{2}}\,}
S
C
=
S
cot
C
=
a
b
cos
C
=
a
2
+
b
2
−
c
2
2
{\displaystyle S_{C}=S\cot C=ab\cos C={\frac {a^{2}+b^{2}-c^{2}}{2}}\,}
S
ω
=
S
cot
ω
=
a
2
+
b
2
+
c
2
2
{\displaystyle S_{\omega }=S\cot \omega ={\frac {a^{2}+b^{2}+c^{2}}{2}}\,}
where
ω
{\displaystyle \omega \,}
is the Brocard angle . The law of cosines is used:
a
2
=
b
2
+
c
2
−
2
b
c
cos
A
{\displaystyle a^{2}=b^{2}+c^{2}-2bc\cos A}
.
S
π
3
=
S
cot
π
3
=
S
3
3
{\displaystyle S_{\frac {\pi }{3}}=S\cot {\frac {\pi }{3}}=S{\frac {\sqrt {3}}{3}}\,}
S
2
φ
=
S
φ
2
−
S
2
2
S
φ
S
φ
2
=
S
φ
+
S
φ
2
+
S
2
{\displaystyle S_{2\varphi }={\frac {S_{\varphi }^{2}-S^{2}}{2S_{\varphi }}}\quad \quad S_{\frac {\varphi }{2}}=S_{\varphi }+{\sqrt {S_{\varphi }^{2}+S^{2}}}\,}
for values of
φ
{\displaystyle \varphi }
where
0
<
φ
<
π
{\displaystyle 0<\varphi <\pi \,}
S
ϑ
+
φ
=
S
ϑ
S
φ
−
S
2
S
ϑ
+
S
φ
S
ϑ
−
φ
=
S
ϑ
S
φ
+
S
2
S
φ
−
S
ϑ
.
{\displaystyle S_{\vartheta +\varphi }={\frac {S_{\vartheta }S_{\varphi }-S^{2}}{S_{\vartheta }+S_{\varphi }}}\quad \quad S_{\vartheta -\varphi }={\frac {S_{\vartheta }S_{\varphi }+S^{2}}{S_{\varphi }-S_{\vartheta }}}\,.}
Furthermore the convention uses a shorthand notation for
S
ϑ
S
φ
=
S
ϑ
φ
{\displaystyle S_{\vartheta }S_{\varphi }=S_{\vartheta \varphi }\,}
and
S
ϑ
S
φ
S
ψ
=
S
ϑ
φ
ψ
.
{\displaystyle S_{\vartheta }S_{\varphi }S_{\psi }=S_{\vartheta \varphi \psi }\,.}
Hence:
sin
A
=
S
b
c
=
S
S
A
2
+
S
2
cos
A
=
S
A
b
c
=
S
A
S
A
2
+
S
2
tan
A
=
S
S
A
{\displaystyle \sin A={\frac {S}{bc}}={\frac {S}{\sqrt {S_{A}^{2}+S^{2}}}}\quad \quad \cos A={\frac {S_{A}}{bc}}={\frac {S_{A}}{\sqrt {S_{A}^{2}+S^{2}}}}\quad \quad \tan A={\frac {S}{S_{A}}}\,}
a
2
=
S
B
+
S
C
b
2
=
S
A
+
S
C
c
2
=
S
A
+
S
B
.
{\displaystyle a^{2}=S_{B}+S_{C}\quad \quad b^{2}=S_{A}+S_{C}\quad \quad c^{2}=S_{A}+S_{B}\,.}
Some important identities:
∑
cyclic
S
A
=
S
A
+
S
B
+
S
C
=
S
ω
{\displaystyle \sum _{\text{cyclic}}S_{A}=S_{A}+S_{B}+S_{C}=S_{\omega }\,}
S
2
=
b
2
c
2
−
S
A
2
=
a
2
c
2
−
S
B
2
=
a
2
b
2
−
S
C
2
{\displaystyle S^{2}=b^{2}c^{2}-S_{A}^{2}=a^{2}c^{2}-S_{B}^{2}=a^{2}b^{2}-S_{C}^{2}\,}
S
B
C
=
S
B
S
C
=
S
2
−
a
2
S
A
S
A
C
=
S
A
S
C
=
S
2
−
b
2
S
B
S
A
B
=
S
A
S
B
=
S
2
−
c
2
S
C
{\displaystyle S_{BC}=S_{B}S_{C}=S^{2}-a^{2}S_{A}\quad \quad S_{AC}=S_{A}S_{C}=S^{2}-b^{2}S_{B}\quad \quad S_{AB}=S_{A}S_{B}=S^{2}-c^{2}S_{C}\,}
S
A
B
C
=
S
A
S
B
S
C
=
S
2
(
S
ω
−
4
R
2
)
S
ω
=
s
2
−
r
2
−
4
r
R
{\displaystyle S_{ABC}=S_{A}S_{B}S_{C}=S^{2}(S_{\omega }-4R^{2})\quad \quad S_{\omega }=s^{2}-r^{2}-4rR\,}
where R is the circumradius and abc = 2SR and where r is the incenter ,
s
=
a
+
b
+
c
2
{\displaystyle s={\frac {a+b+c}{2}}\,}
and
a
+
b
+
c
=
S
r
.
{\displaystyle a+b+c={\frac {S}{r}}\,.}
Some useful trigonometric conversions:
sin
A
sin
B
sin
C
=
S
4
R
2
cos
A
cos
B
cos
C
=
S
ω
−
4
R
2
4
R
2
{\displaystyle \sin A\sin B\sin C={\frac {S}{4R^{2}}}\quad \quad \cos A\cos B\cos C={\frac {S_{\omega }-4R^{2}}{4R^{2}}}}
∑
cyclic
sin
A
=
S
2
R
r
=
s
R
∑
cyclic
cos
A
=
r
+
R
R
∑
cyclic
tan
A
=
S
S
ω
−
4
R
2
=
tan
A
tan
B
tan
C
.
{\displaystyle \sum _{\text{cyclic}}\sin A={\frac {S}{2Rr}}={\frac {s}{R}}\quad \quad \sum _{\text{cyclic}}\cos A={\frac {r+R}{R}}\quad \quad \sum _{\text{cyclic}}\tan A={\frac {S}{S_{\omega }-4R^{2}}}=\tan A\tan B\tan C\,.}
Some useful formulas:
∑
cyclic
a
2
S
A
=
a
2
S
A
+
b
2
S
B
+
c
2
S
C
=
2
S
2
∑
cyclic
a
4
=
2
(
S
ω
2
−
S
2
)
{\displaystyle \sum _{\text{cyclic}}a^{2}S_{A}=a^{2}S_{A}+b^{2}S_{B}+c^{2}S_{C}=2S^{2}\quad \quad \sum _{\text{cyclic}}a^{4}=2(S_{\omega }^{2}-S^{2})\,}
∑
cyclic
S
A
2
=
S
ω
2
−
2
S
2
∑
cyclic
S
B
C
=
∑
cyclic
S
B
S
C
=
S
2
∑
cyclic
b
2
c
2
=
S
ω
2
+
S
2
.
{\displaystyle \sum _{\text{cyclic}}S_{A}^{2}=S_{\omega }^{2}-2S^{2}\quad \quad \sum _{\text{cyclic}}S_{BC}=\sum _{\text{cyclic}}S_{B}S_{C}=S^{2}\quad \quad \sum _{\text{cyclic}}b^{2}c^{2}=S_{\omega }^{2}+S^{2}\,.}
Some examples using Conway triangle notation:
Let D be the distance between two points P and Q whose trilinear coordinates are p a : p b : p c and q a : q b : q c . Let K p = ap a + bp b + cp c and let K q = aq a + bq b + cq c . Then D is given by the formula:
D
2
=
∑
cyclic
a
2
S
A
(
p
a
K
p
−
q
a
K
q
)
2
.
{\displaystyle D^{2}=\sum _{\text{cyclic}}a^{2}S_{A}\left({\frac {p_{a}}{K_{p}}}-{\frac {q_{a}}{K_{q}}}\right)^{2}\,.}
Using this formula it is possible to determine OH, the distance between the circumcenter and the orthocenter as follows:
For the circumcenter p a = aS A and for the orthocenter q a = S B S C /a
K
p
=
∑
cyclic
a
2
S
A
=
2
S
2
K
q
=
∑
cyclic
S
B
S
C
=
S
2
.
{\displaystyle K_{p}=\sum _{\text{cyclic}}a^{2}S_{A}=2S^{2}\quad \quad K_{q}=\sum _{\text{cyclic}}S_{B}S_{C}=S^{2}\,.}
Hence:
D
2
=
∑
cyclic
a
2
S
A
(
a
S
A
2
S
2
−
S
B
S
C
a
S
2
)
2
=
1
4
S
4
∑
cyclic
a
4
S
A
3
−
S
A
S
B
S
C
S
4
∑
cyclic
a
2
S
A
+
S
A
S
B
S
C
S
4
∑
cyclic
S
B
S
C
=
1
4
S
4
∑
cyclic
a
2
S
A
2
(
S
2
−
S
B
S
C
)
−
2
(
S
ω
−
4
R
2
)
+
(
S
ω
−
4
R
2
)
=
1
4
S
2
∑
cyclic
a
2
S
A
2
−
S
A
S
B
S
C
S
4
∑
cyclic
a
2
S
A
−
(
S
ω
−
4
R
2
)
=
1
4
S
2
∑
cyclic
a
2
(
b
2
c
2
−
S
2
)
−
1
2
(
S
ω
−
4
R
2
)
−
(
S
ω
−
4
R
2
)
=
3
a
2
b
2
c
2
4
S
2
−
1
4
∑
cyclic
a
2
−
3
2
(
S
ω
−
4
R
2
)
=
3
R
2
−
1
2
S
ω
−
3
2
S
ω
+
6
R
2
=
9
R
2
−
2
S
ω
.
{\displaystyle {\begin{aligned}D^{2}&{}=\sum _{\text{cyclic}}a^{2}S_{A}\left({\frac {aS_{A}}{2S^{2}}}-{\frac {S_{B}S_{C}}{aS^{2}}}\right)^{2}\\&{}={\frac {1}{4S^{4}}}\sum _{\text{cyclic}}a^{4}S_{A}^{3}-{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}+{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}S_{B}S_{C}\\&{}={\frac {1}{4S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}^{2}(S^{2}-S_{B}S_{C})-2(S_{\omega }-4R^{2})+(S_{\omega }-4R^{2})\\&{}={\frac {1}{4S^{2}}}\sum _{\text{cyclic}}a^{2}S_{A}^{2}-{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}-(S_{\omega }-4R^{2})\\&{}={\frac {1}{4S^{2}}}\sum _{\text{cyclic}}a^{2}(b^{2}c^{2}-S^{2})-{\frac {1}{2}}(S_{\omega }-4R^{2})-(S_{\omega }-4R^{2})\\&{}={\frac {3a^{2}b^{2}c^{2}}{4S^{2}}}-{\frac {1}{4}}\sum _{\text{cyclic}}a^{2}-{\frac {3}{2}}(S_{\omega }-4R^{2})\\&{}=3R^{2}-{\frac {1}{2}}S_{\omega }-{\frac {3}{2}}S_{\omega }+6R^{2}\\&{}=9R^{2}-2S_{\omega }.\end{aligned}}}
This gives:
O
H
=
9
R
2
−
2
S
ω
.
{\displaystyle OH={\sqrt {9R^{2}-2S_{\omega }\,}}.}
References
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑