Misplaced Pages

Cross-correlation matrix

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Correlation functions) For other uses, see Correlation function (disambiguation).
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (December 2018) (Learn how and when to remove this message)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Cross-correlation matrix" – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message)
(Learn how and when to remove this message)
Part of a series on Statistics
Correlation and covariance
For random vectors
For stochastic processes
For deterministic signals

The cross-correlation matrix of two random vectors is a matrix containing as elements the cross-correlations of all pairs of elements of the random vectors. The cross-correlation matrix is used in various digital signal processing algorithms.

Definition

For two random vectors X = ( X 1 , , X m ) T {\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{m})^{\rm {T}}} and Y = ( Y 1 , , Y n ) T {\displaystyle \mathbf {Y} =(Y_{1},\ldots ,Y_{n})^{\rm {T}}} , each containing random elements whose expected value and variance exist, the cross-correlation matrix of X {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } is defined by

R X Y   E [ X Y T ] {\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {Y} }\triangleq \ \operatorname {E} }

and has dimensions m × n {\displaystyle m\times n} . Written component-wise:

R X Y = [ E [ X 1 Y 1 ] E [ X 1 Y 2 ] E [ X 1 Y n ] E [ X 2 Y 1 ] E [ X 2 Y 2 ] E [ X 2 Y n ] E [ X m Y 1 ] E [ X m Y 2 ] E [ X m Y n ] ] {\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {Y} }={\begin{bmatrix}\operatorname {E} &\operatorname {E} &\cdots &\operatorname {E} \\\\\operatorname {E} &\operatorname {E} &\cdots &\operatorname {E} \\\\\vdots &\vdots &\ddots &\vdots \\\\\operatorname {E} &\operatorname {E} &\cdots &\operatorname {E} \\\\\end{bmatrix}}}

The random vectors X {\displaystyle \mathbf {X} } and Y {\displaystyle \mathbf {Y} } need not have the same dimension, and either might be a scalar value.

Example

For example, if X = ( X 1 , X 2 , X 3 ) T {\displaystyle \mathbf {X} =\left(X_{1},X_{2},X_{3}\right)^{\rm {T}}} and Y = ( Y 1 , Y 2 ) T {\displaystyle \mathbf {Y} =\left(Y_{1},Y_{2}\right)^{\rm {T}}} are random vectors, then R X Y {\displaystyle \operatorname {R} _{\mathbf {X} \mathbf {Y} }} is a 3 × 2 {\displaystyle 3\times 2} matrix whose ( i , j ) {\displaystyle (i,j)} -th entry is E [ X i Y j ] {\displaystyle \operatorname {E} } .

Complex random vectors

If Z = ( Z 1 , , Z m ) T {\displaystyle \mathbf {Z} =(Z_{1},\ldots ,Z_{m})^{\rm {T}}} and W = ( W 1 , , W n ) T {\displaystyle \mathbf {W} =(W_{1},\ldots ,W_{n})^{\rm {T}}} are complex random vectors, each containing random variables whose expected value and variance exist, the cross-correlation matrix of Z {\displaystyle \mathbf {Z} } and W {\displaystyle \mathbf {W} } is defined by

R Z W   E [ Z W H ] {\displaystyle \operatorname {R} _{\mathbf {Z} \mathbf {W} }\triangleq \ \operatorname {E} }

where H {\displaystyle {}^{\rm {H}}} denotes Hermitian transposition.

Uncorrelatedness

Two random vectors X = ( X 1 , , X m ) T {\displaystyle \mathbf {X} =(X_{1},\ldots ,X_{m})^{\rm {T}}} and Y = ( Y 1 , , Y n ) T {\displaystyle \mathbf {Y} =(Y_{1},\ldots ,Y_{n})^{\rm {T}}} are called uncorrelated if

E [ X Y T ] = E [ X ] E [ Y ] T . {\displaystyle \operatorname {E} =\operatorname {E} \operatorname {E} ^{\rm {T}}.}

They are uncorrelated if and only if their cross-covariance matrix K X Y {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }} matrix is zero.

In the case of two complex random vectors Z {\displaystyle \mathbf {Z} } and W {\displaystyle \mathbf {W} } they are called uncorrelated if

E [ Z W H ] = E [ Z ] E [ W ] H {\displaystyle \operatorname {E} =\operatorname {E} \operatorname {E} ^{\rm {H}}}

and

E [ Z W T ] = E [ Z ] E [ W ] T . {\displaystyle \operatorname {E} =\operatorname {E} \operatorname {E} ^{\rm {T}}.}

Properties

Relation to the cross-covariance matrix

The cross-correlation is related to the cross-covariance matrix as follows:

K X Y = E [ ( X E [ X ] ) ( Y E [ Y ] ) T ] = R X Y E [ X ] E [ Y ] T {\displaystyle \operatorname {K} _{\mathbf {X} \mathbf {Y} }=\operatorname {E} )(\mathbf {Y} -\operatorname {E} )^{\rm {T}}]=\operatorname {R} _{\mathbf {X} \mathbf {Y} }-\operatorname {E} \operatorname {E} ^{\rm {T}}}
Respectively for complex random vectors:
K Z W = E [ ( Z E [ Z ] ) ( W E [ W ] ) H ] = R Z W E [ Z ] E [ W ] H {\displaystyle \operatorname {K} _{\mathbf {Z} \mathbf {W} }=\operatorname {E} )(\mathbf {W} -\operatorname {E} )^{\rm {H}}]=\operatorname {R} _{\mathbf {Z} \mathbf {W} }-\operatorname {E} \operatorname {E} ^{\rm {H}}}

See also

References

  1. Gubner, John A. (2006). Probability and Random Processes for Electrical and Computer Engineers. Cambridge University Press. ISBN 978-0-521-86470-1.

Further reading

Categories: