Misplaced Pages

Deltoidal hexecontahedron

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Catalan polyhedron
Deltoidal hexecontahedron
Deltoidal hexecontahedron
(Click here for rotating model)
Type Catalan
Conway notation oD or deD
Coxeter diagram
Face polygon
kite
Faces 60
Edges 120
Vertices 62 = 12 + 20 + 30
Face configuration V3.4.5.4
Symmetry group Ih, H3, , (*532)
Rotation group I, , (532)
Dihedral angle 154.1214° arccos(⁠-19-8√5/41⁠)
Properties convex, face-transitive

rhombicosidodecahedron
(dual polyhedron)
Deltoidal hexecontahedron net
Net
3D model of a deltoidal hexecontahedron

In geometry, a deltoidal hexecontahedron (also sometimes called a trapezoidal hexecontahedron, a strombic hexecontahedron, or a tetragonal hexacontahedron) is a Catalan solid which is the dual polyhedron of the rhombicosidodecahedron, an Archimedean solid. It is one of six Catalan solids to not have a Hamiltonian path among its vertices.

It is topologically identical to the nonconvex rhombic hexecontahedron.

Lengths and angles

The 60 faces are deltoids or kites. The short and long edges of each kite are in the ratio 1:⁠7 + √5/6⁠ ≈ 1:1.539344663...

The angle between two short edges in a single face is arccos(⁠-5-2√5/20⁠)≈118.2686774705°. The opposite angle, between long edges, is arccos(⁠-5+9√5/40⁠)≈67.783011547435° . The other two angles of each face, between a short and a long edge each, are both equal to arccos(⁠5-2√5/10⁠)≈86.97415549104°.

The dihedral angle between any pair of adjacent faces is arccos(⁠-19-8√5/41⁠)≈154.12136312578°.

Topology

Topologically, the deltoidal hexecontahedron is identical to the nonconvex rhombic hexecontahedron. The deltoidal hexecontahedron can be derived from a dodecahedron (or icosahedron) by pushing the face centers, edge centers and vertices out to different radii from the body center. The radii are chosen so that the resulting shape has planar kite faces each such that vertices go to degree-3 corners, faces to degree-five corners, and edge centers to degree-four points.

Cartesian coordinates

The 62 vertices of the deltoidal hexecontahedron fall in three sets centered on the origin:

  • Twelve vertices are of the form of a unit circumradius regular icosahedron.
  • Twenty vertices are of the form of a 3 11 15 6 5 0.9571 {\displaystyle {\frac {3}{11}}{\sqrt {15-{\frac {6}{\sqrt {5}}}}}\approx 0.9571} scaled regular dodecahedron.
  • Thirty vertices are of the form of a 3 1 2 5 0.9748 {\displaystyle 3{\sqrt {1-{\frac {2}{\sqrt {5}}}}}\approx 0.9748} scaled Icosidodecahedron.

These hulls are visualized in the figure below:

Deltoidal hexacontahedron hulls

Orthogonal projections

The deltoidal hexecontahedron has 3 symmetry positions located on the 3 types of vertices:

Orthogonal projections
Projective
symmetry
Image
Dual
image

Variations

This figure from Perspectiva Corporum Regularium (1568) by Wenzel Jamnitzer can be seen as a deltoidal hexecontahedron.

The deltoidal hexecontahedron can be constructed from either the regular icosahedron or regular dodecahedron by adding vertices mid-edge, and mid-face, and creating new edges from each edge center to the face centers. Conway polyhedron notation would give these as oI, and oD, ortho-icosahedron, and ortho-dodecahedron. These geometric variations exist as a continuum along one degree of freedom.

Related polyhedra and tilings

Spherical deltoidal hexecontahedron
Family of uniform icosahedral polyhedra
Symmetry: , (*532) , (532)
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

When projected onto a sphere (see right), it can be seen that the edges make up the edges of an icosahedron and dodecahedron arranged in their dual positions.

This tiling is topologically related as a part of sequence of deltoidal polyhedra with face figure (V3.4.n.4), and continues as tilings of the hyperbolic plane. These face-transitive figures have (*n32) reflectional symmetry.

*n32 symmetry mutation of dual expanded tilings: V3.4.n.4
Symmetry
*n32
Spherical Euclid. Compact hyperb. Paraco.
*232
*332
*432
*532
*632
*732
*832
...
*∞32
Figure
Config.

V3.4.2.4

V3.4.3.4

V3.4.4.4

V3.4.5.4

V3.4.6.4

V3.4.7.4

V3.4.8.4

V3.4.∞.4

See also

References

  1. Conway, Symmetries of things, p.284-286
  2. "Archimedean Dual Graph".

External links

Catalan solids

Tetrahedron
(Seed)

Octahedron
(Dual)

Cube
(Seed)

Icosahedron
(Dual)

Dodecahedron
(Seed)

Triakis tetrahedron
(Needle)

Triakis tetrahedron
(Kis)

Triakis octahedron
(Needle)

Tetrakis hexahedron
(Kis)

Triakis icosahedron
(Needle)

Pentakis dodecahedron
(Kis)

Rhombic hexahedron
(Join)

Rhombic dodecahedron
(Join)

Rhombic triacontahedron
(Join)

Deltoidal dodecahedron
(Ortho)

Disdyakis hexahedron
(Meta)

Deltoidal icositetrahedron
(Ortho)

Disdyakis dodecahedron
(Meta)

Deltoidal hexecontahedron
(Ortho)

Disdyakis triacontahedron
(Meta)

Pentagonal dodecahedron
(Gyro)

Pentagonal icositetrahedron
(Gyro)

Pentagonal hexecontahedron
(Gyro)
Archimedean duals

Tetrahedron
(Seed)

Tetrahedron
(Dual)

Cube
(Seed)

Octahedron
(Dual)

Dodecahedron
(Seed)

Icosahedron
(Dual)

Truncated tetrahedron
(Truncate)

Truncated tetrahedron
(Zip)

Truncated cube
(Truncate)

Truncated octahedron
(Zip)

Truncated dodecahedron
(Truncate)

Truncated icosahedron
(Zip)

Tetratetrahedron
(Ambo)

Cuboctahedron
(Ambo)

Icosidodecahedron
(Ambo)

Rhombitetratetrahedron
(Expand)

Truncated tetratetrahedron
(Bevel)

Rhombicuboctahedron
(Expand)

Truncated cuboctahedron
(Bevel)

Rhombicosidodecahedron
(Expand)

Truncated icosidodecahedron
(Bevel)

Snub tetrahedron
(Snub)

Snub cube
(Snub)

Snub dodecahedron
(Snub)
Convex polyhedra
Platonic solids (regular)
Archimedean solids
(semiregular or uniform)
Catalan solids
(duals of Archimedean)
Dihedral regular
Dihedral uniform
duals:
Dihedral others
Degenerate polyhedra are in italics.


Stub icon

This polyhedron-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: