Misplaced Pages

Friedman's SSCG function

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Fast-growing function

In mathematics, a simple subcubic graph (SSCG) is a finite simple graph in which each vertex has a degree of at most three. Suppose we have a sequence of simple subcubic graphs G1, G2, ... such that each graph Gi has at most i + k vertices (for some integer k) and for no i < j is Gi homeomorphically embeddable into (i.e. is a graph minor of) Gj.

The Robertson–Seymour theorem proves that subcubic graphs (simple or not) are well-founded by homeomorphic embeddability, implying such a sequence cannot be infinite. Then, by applying Kőnig's lemma on the tree of such sequences under extension, for each value of k there is a sequence with maximal length. The function SSCG(k) denotes that length for simple subcubic graphs. The function SCG(k) denotes that length for (general) subcubic graphs.

The SCG sequence begins SCG(0) = 6, but then explodes to a value equivalent to fε2*2 in the fast-growing hierarchy.

The SSCG sequence begins slower than SCG, SSCG(0) = 2, SSCG(1) = 5, but then grows rapidly. SSCG(2) = 3 × 2 − 8 ≈ 3.241704 × 10. Its first and last 20 digits are 32417042291246009846...34057047399148290040. SSCG(3) is much larger than both TREE(3) and TREE(3), that is, the TREE function nested TREE(3) times with 3 at the bottom.

Adam P. Goucher claims there is no qualitative difference between the asymptotic growth rates of SSCG and SCG. He writes "It's clear that SCG(n) ≥ SSCG(n), but I can also prove SSCG(4n + 3) ≥ SCG(n)."

The function was proposed and studied by Harvey Friedman.

See also

References

  1. [FOM] 274:Subcubic Graph Numbers
  2. [FOM] 279:Subcubic Graph Numbers/restated
  3. TREE(3) and impartial games | Complex Projective 4-Space
Large numbers
Examples
in
numerical
order
Expression
methods
Notations
Operators
Related
articles
(alphabetical
order)
Categories: