Misplaced Pages

gnu code

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
For the open-source software development project, see GNU coding standards.

In quantum information, the gnu code refers to a particular family of quantum error correcting codes, with the special property of being invariant under permutations of the qubits. Given integers g (the gap), n (the occupancy), and m (the length of the code), the two codewords are

| 0 L = even 0 n ( n ) 2 n 1 | D g m {\displaystyle |0_{\rm {L}}\rangle =\sum _{\ell \,{\textrm {even}} \atop 0\leq \ell \leq n}{\sqrt {\frac {n \choose \ell }{2^{n-1}}}}|D_{g\ell }^{m}\rangle }
| 1 L = odd 0 n ( n ) 2 n 1 | D g m {\displaystyle |1_{\rm {L}}\rangle =\sum _{\ell \,{\textrm {odd}} \atop 0\leq \ell \leq n}{\sqrt {\frac {n \choose \ell }{2^{n-1}}}}|D_{g\ell }^{m}\rangle }

where | D k m {\displaystyle |D_{k}^{m}\rangle } are the Dicke states consisting of a uniform superposition of all weight-k words on m qubits, e.g.

| D 2 4 = | 0011 + | 0101 + | 1001 + | 0110 + | 1010 + | 1100 6 {\displaystyle |D_{2}^{4}\rangle ={\frac {|0011\rangle +|0101\rangle +|1001\rangle +|0110\rangle +|1010\rangle +|1100\rangle }{\sqrt {6}}}}

The real parameter u = m g n {\displaystyle u={\frac {m}{gn}}} scales the density of the code. The length m = g n u {\displaystyle m=gnu} , hence the name of the code. For odd g = n {\displaystyle g=n} and u 1 {\displaystyle u\geq 1} , the gnu code is capable of correcting g 1 2 {\displaystyle {\frac {g-1}{2}}} erasure errors, or deletion errors.

References

  1. Ouyang, Yingkai (2014-12-10). "Permutation-invariant quantum codes". Physical Review A. 90 (6): 062317. arXiv:1302.3247. Bibcode:2014PhRvA..90f2317O. doi:10.1103/physreva.90.062317. ISSN 1050-2947. S2CID 119114455.
  2. Ouyang, Yingkai (2021-02-04). "Permutation-invariant quantum coding for quantum deletion channels". arXiv:2102.02494v1 .
Quantum information science
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Categories: