Misplaced Pages

Hermite ring

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article may lack focus or may be about more than one topic. Please help improve this article, possibly by splitting the article and/or by introducing a disambiguation page, or discuss this issue on the talk page. (May 2024)
This article includes inline citations, but they are not properly formatted. Please improve this article by correcting them. (May 2024) (Learn how and when to remove this message)

In algebra, the term Hermite ring (after Charles Hermite) has been applied to three different objects.

According to Kaplansky (1949) (p. 465), a ring is right Hermite if, for every two elements a and b of the ring, there is an element d of the ring and an invertible 2×2 matrix M over the ring such that (a b)M = (d 0), and the term left Hermite is defined similarly. Matrices over such a ring can be put in Hermite normal form by right multiplication by a square invertible matrix (Kaplansky (1949), p. 468.) Lam (2006) (appendix to §I.4) calls this property K-Hermite, using Hermite instead in the sense given below.

According to Lam (1978) (§I.4, p. 26), a ring is right Hermite if any finitely generated stably free right module over the ring is free. This is equivalent to requiring that any row vector (b1,...,bn) of elements of the ring which generate it as a right module (i.e., b1R + ... + bnR = R) can be completed to a (not necessarily square) invertible matrix by adding some number of rows. The criterion of being left Hermite can be defined similarly. Lissner (1965) (p. 528) earlier called a commutative ring with this property an H-ring.

According to Cohn (2006) (§0.4), a ring is Hermite if, in addition to every stably free (left) module being free, it has invariant basis number.

All commutative rings which are Hermite in the sense of Kaplansky are also Hermite in the sense of Lam, but the converse is not necessarily true. All Bézout domains are Hermite in the sense of Kaplansky, and a commutative ring which is Hermite in the sense of Kaplansky is also a Bézout ring (Lam (2006), pp. 39-40.)

The Hermite ring conjecture, introduced by Lam (1978) (p. xi), states that if R is a commutative Hermite ring, then the polynomial ring R is also a Hermite ring.

References


Stub icon

This algebra-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Hermite ring Add topic