Misplaced Pages

High-altitude nuclear explosion

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from High altitude nuclear explosion) Nuclear detonations in the upper layers of Earth's atmosphere
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "High-altitude nuclear explosion" – news · newspapers · books · scholar · JSTOR (September 2018) (Learn how and when to remove this message)
Hardtack Teak, 1958
Frame of the Starfish Prime nuclear test

High-altitude nuclear explosions are the result of nuclear weapons testing within the upper layers of the Earth's atmosphere and in outer space. Several such tests were performed at high altitudes by the United States and the Soviet Union between 1958 and 1962.

The Partial Test Ban Treaty was passed in October 1963, ending atmospheric and exoatmospheric nuclear tests. The Outer Space Treaty of 1967 banned the stationing of nuclear weapons in space, in addition to other weapons of mass destruction. The Comprehensive Nuclear-Test-Ban Treaty of 1996 prohibits all nuclear testing; whether over- or underground, underwater or in the atmosphere, but hasn't entered into force yet as it hasn't been ratified by some of the states party to the Treaty.

EMP generation

The strong electromagnetic pulse (EMP) that results has several components. In the first few tenths of nanoseconds, about a tenth of a percent of the weapon yield appears as powerful gamma rays with energies of one to three mega-electron volts (MeV, a unit of energy). The gamma rays penetrate the atmosphere and collide with air molecules, depositing their energy to produce huge quantities of positive ions and recoil electrons (also known as Compton electrons). These MeV-energy Compton electrons then accelerate and spiral along the Earth's magnetic field lines. The resulting transient electric fields and currents generate electromagnetic emissions in the radio frequency range of 15 MHz to 250 MHz. This high-altitude EMP occurs between 30 and 50 kilometers (19 and 31 miles) above the Earth's surface. The potential as an anti-satellite weapon became apparent in August 1958 during Hardtack Teak. The EMP observed at the Apia Observatory at Samoa was four times more powerful than any created by solar storms, while in July 1962 the Starfish Prime test damaged electronics in Honolulu and New Zealand (approximately 1,300 kilometres (810 mi) away), fused 300 street lights on Oahu (Hawaii), set off about 100 burglar alarms, and caused the failure of a microwave repeating station on Kauai, which cut off the sturdy telephone system from the other Hawaiian islands. The radius for an effective satellite kill for the Compton radiation produced by such a nuclear weapon in space was determined to be roughly 80 kilometres (50 mi). Further testing to this end was carried out, and embodied in a Department of Defense program, Program 437.

The mechanism for a 400 kilometres (250 mi) high-altitude burst EMP: gamma rays hit the atmosphere between 20 and 40 kilometres (12 and 25 mi) altitude, ejecting electrons which are then deflected sideways by the Earth's magnetic field

.

Drawbacks

There are problems with nuclear weapons carried over to testing and deployment scenarios, however. Because of the very large radius associated with nuclear events, it was nearly impossible to prevent indiscriminate damage to other satellites, including one's own satellites. Starfish Prime produced an artificial radiation belt in space that soon destroyed three satellites (Ariel, TRAAC, and Transit 4B all failed after traversing the radiation belt, while Cosmos V, Injun I and Telstar 1 suffered minor degradation, due to some radiation damage to solar cells, etc.). The radiation dose rate was at least 0.6 Gy/day at four months after Starfish for a well-shielded satellite or crewed capsule in a polar circular earth orbit, which caused NASA concern with regard to its crewed space exploration programs.

Differences from atmospheric tests

Late phases of TEAK fireball and formation of Northern Branch of Aurora as viewed from aircraft flying northwest of explosion.

In general, nuclear effects in space (or very high altitudes) have a qualitatively different display. While an atmospheric nuclear explosion has a characteristic mushroom-shaped cloud, high-altitude and space explosions tend to manifest a spherical 'cloud' until distorted by Earth's magnetic field. The charged particles resulting from the blast are accelerated along the Earth's magnetic field lines to create an auroral display at the conjugate point, which has led documentary maker Peter Kuran to characterize these detonations as 'the rainbow bombs'. The visual effects of a high-altitude or space-based explosion may last longer than atmospheric tests, sometimes in excess of 30 minutes. Heat from the Bluegill Triple Prime shot, at an altitude of 50 kilometers (31 miles), was felt by personnel on the ground at Johnston Atoll, and this test caused retina burns to two personnel at ground zero who were not wearing their safety goggles.

Soviet high-altitude tests

The Soviets detonated four high-altitude tests in 1961 and three in 1962. During the Cuban Missile Crisis in October 1962, both the US and the USSR detonated several high-altitude nuclear explosions as a form of saber rattling.

The worst effects of a Soviet high-altitude test occurred on 22 October 1962, in the Soviet Project K nuclear tests (ABM System A proof tests) when a 300 kt missile-warhead detonated near Dzhezkazgan at 290-kilometre (180 mi) altitude. The EMP fused 570 kilometres (350 mi) of overhead telephone line with a measured current of 2,500 A, started a fire that burned down the Karaganda power plant, and shut down 1,000 kilometres (620 mi) of shallow-buried power cables between Tselinograd and Alma-Ata.

List of high-altitude nuclear explosions

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (October 2024) (Learn how and when to remove this message)
See also: List of artificial radiation belts
Hardtack I Orange
View of Starfish Prime through thin cloud, as seen from Honolulu, 1,300 km away.
The debris fireball and aurora created by the Starfish Prime test, as seen from a KC-135 aircraft at 3 minutes.
Mission Date Yield Altitude
 US Hardtack I – (Operation Newsreel) – Johnston Atoll, Pacific Ocean
Yucca 28 April 1958 1.7 kt 26.2 km
Teak 1 August 1958 3.8 Mt 76.8 km
Orange 12 August 1958 3.8 Mt 34 km
 US Argus – South Atlantic Ocean
Argus I 27 August 1958 1.7 kt 200 km
Argus II 30 August 1958 1.7 kt 240 km
Argus III 6 September 1958 1.7 kt 540 km
 Soviet Union – 1961 tests – Kapustin Yar
Test #88 6 September 1961 10.5 kt 22.7 km
Test #115 6 October 1961 40 kt 41.3 km
Test #127 27 October 1961 1.2 kt 150 km
Test #128 27 October 1961 1.2 kt 300 km
 USDominic I – (Operation Fishbowl) – Johnston Atoll, Pacific Ocean
Bluegill 3 June 1962 failed
Bluegill Prime 25 July 1962 failed
Bluegill Double Prime 15 October 1962 failed
Bluegill Triple Prime 26 October 1962 410 kt 50 km
Starfish 20 June 1962 failed
Starfish Prime 9 July 1962 1.4 Mt 400 km
Checkmate 20 October 1962 7 kt 147 km
Kingfish 1 November 1962 410 kt 97 km
Tightrope 4 November 1962 <5 kt 30–80 km
 Soviet UnionProject K – Kapustin Yar
Test #184 22 October 1962 300 kt 290 km
Test #187 28 October 1962 300 kt 150 km
Test #195 1 November 1962 300 kt 59 km

See also

References

  1. Tinsley, B. A. (December 1962). "Riometer observations of HF noise at Samoa following high-altitude nuclear test". New Zealand Journal of Geology and Geophysics. 5 (6): 964–968. doi:10.1080/00288306.1962.10420048. ISSN 0028-8306.
  2. Keys, J. G. (1964-10-01). "Artificial aurorae from high-altitude nuclear tests". Journal of Atmospheric and Terrestrial Physics. 26 (10): 979–993. doi:10.1016/0021-9169(64)90173-4. ISSN 0021-9169.
  3. Vittitoe, Charles N. (June 1, 1989). Did High-Altitude EMP Cause the Hawaiian Streetlight Incident? (PDF) (Report). Sandia National Laboratories. Archived (PDF) from the original on August 23, 2020. Retrieved September 15, 2020.

External links

US Government Films:

Nuclear technology
Science
Fuel
Neutron
Power
Medicine
Imaging
Therapy
Processing
Weapons
Topics
Lists
Waste
Products
Disposal
Debate
Nuclear reactors
Fission
Moderator
Light water
Heavy water
by coolant
D2O
H2O
Organic
CO2
Graphite
by coolant
Water
H2O
Gas
CO2
He
Molten-salt
Fluorides
None
(fast-neutron)
Generation IV
Others
Fusion
by confinement
Magnetic
Inertial
Other
Categories: