Misplaced Pages

Institutional model theory

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This page is about the concept in mathematical logic. For the concepts in sociology, see Institutional theory and Institutional logic.
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (February 2022) (Learn how and when to remove this message)

In mathematical logic, institutional model theory generalizes a large portion of first-order model theory to an arbitrary logical system.

Overview

The notion of "logical system" here is formalized as an institution. Institutions constitute a model-oriented meta-theory on logical systems similar to how the theory of rings and modules constitute a meta-theory for classical linear algebra. Another analogy can be made with universal algebra versus groups, rings, modules etc. By abstracting away from the realities of the actual conventional logics, it can be noticed that institution theory comes in fact closer to the realities of non-conventional logics.

Institutional model theory analyzes and generalizes classical model-theoretic notions and results, like

For each concept and theorem, the infrastructure and properties required are analyzed and formulated as conditions on institutions, thus providing a detailed insight to which properties of first-order logic they rely on and how much they can be generalized to other logics.

References

External links

Mathematical logic
General
Theorems (list)
 and paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types of sets
Maps and cardinality
Set theories
Formal systems (list),
language and syntax
Example axiomatic
systems
 (list)
Proof theory
Model theory
Computability theory
Related
icon Mathematics portal
Categories:
Institutional model theory Add topic