Use of complex numbers to evaluate integrals
In integral calculus , Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions . Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely
e
i
x
{\displaystyle e^{ix}}
and
e
−
i
x
{\displaystyle e^{-ix}}
and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts , and is sufficiently powerful to integrate any rational expression involving trigonometric functions.
Euler's formula
Euler's formula states that
e
i
x
=
cos
x
+
i
sin
x
.
{\displaystyle e^{ix}=\cos x+i\,\sin x.}
Substituting
−
x
{\displaystyle -x}
for
x
{\displaystyle x}
gives the equation
e
−
i
x
=
cos
x
−
i
sin
x
{\displaystyle e^{-ix}=\cos x-i\,\sin x}
because cosine is an even function and sine is odd. These two equations can be solved for the sine and cosine to give
cos
x
=
e
i
x
+
e
−
i
x
2
and
sin
x
=
e
i
x
−
e
−
i
x
2
i
.
{\displaystyle \cos x={\frac {e^{ix}+e^{-ix}}{2}}\quad {\text{and}}\quad \sin x={\frac {e^{ix}-e^{-ix}}{2i}}.}
Examples
First example
Consider the integral
∫
cos
2
x
d
x
.
{\displaystyle \int \cos ^{2}x\,dx.}
The standard approach to this integral is to use a half-angle formula to simplify the integrand. We can use Euler's identity instead:
∫
cos
2
x
d
x
=
∫
(
e
i
x
+
e
−
i
x
2
)
2
d
x
=
1
4
∫
(
e
2
i
x
+
2
+
e
−
2
i
x
)
d
x
{\displaystyle {\begin{aligned}\int \cos ^{2}x\,dx\,&=\,\int \left({\frac {e^{ix}+e^{-ix}}{2}}\right)^{2}dx\\&=\,{\frac {1}{4}}\int \left(e^{2ix}+2+e^{-2ix}\right)dx\end{aligned}}}
At this point, it would be possible to change back to real numbers using the formula e + e = 2 cos 2x . Alternatively, we can integrate the complex exponentials and not change back to trigonometric functions until the end:
1
4
∫
(
e
2
i
x
+
2
+
e
−
2
i
x
)
d
x
=
1
4
(
e
2
i
x
2
i
+
2
x
−
e
−
2
i
x
2
i
)
+
C
=
1
4
(
2
x
+
sin
2
x
)
+
C
.
{\displaystyle {\begin{aligned}{\frac {1}{4}}\int \left(e^{2ix}+2+e^{-2ix}\right)dx&={\frac {1}{4}}\left({\frac {e^{2ix}}{2i}}+2x-{\frac {e^{-2ix}}{2i}}\right)+C\\&={\frac {1}{4}}\left(2x+\sin 2x\right)+C.\end{aligned}}}
Second example
Consider the integral
∫
sin
2
x
cos
4
x
d
x
.
{\displaystyle \int \sin ^{2}x\cos 4x\,dx.}
This integral would be extremely tedious to solve using trigonometric identities, but using Euler's identity makes it relatively painless:
∫
sin
2
x
cos
4
x
d
x
=
∫
(
e
i
x
−
e
−
i
x
2
i
)
2
(
e
4
i
x
+
e
−
4
i
x
2
)
d
x
=
−
1
8
∫
(
e
2
i
x
−
2
+
e
−
2
i
x
)
(
e
4
i
x
+
e
−
4
i
x
)
d
x
=
−
1
8
∫
(
e
6
i
x
−
2
e
4
i
x
+
e
2
i
x
+
e
−
2
i
x
−
2
e
−
4
i
x
+
e
−
6
i
x
)
d
x
.
{\displaystyle {\begin{aligned}\int \sin ^{2}x\cos 4x\,dx&=\int \left({\frac {e^{ix}-e^{-ix}}{2i}}\right)^{2}\left({\frac {e^{4ix}+e^{-4ix}}{2}}\right)dx\\&=-{\frac {1}{8}}\int \left(e^{2ix}-2+e^{-2ix}\right)\left(e^{4ix}+e^{-4ix}\right)dx\\&=-{\frac {1}{8}}\int \left(e^{6ix}-2e^{4ix}+e^{2ix}+e^{-2ix}-2e^{-4ix}+e^{-6ix}\right)dx.\end{aligned}}}
At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there.
Either method gives
∫
sin
2
x
cos
4
x
d
x
=
−
1
24
sin
6
x
+
1
8
sin
4
x
−
1
8
sin
2
x
+
C
.
{\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24}}\sin 6x+{\frac {1}{8}}\sin 4x-{\frac {1}{8}}\sin 2x+C.}
Using real parts
In addition to Euler's identity, it can be helpful to make judicious use of the real parts of complex expressions. For example, consider the integral
∫
e
x
cos
x
d
x
.
{\displaystyle \int e^{x}\cos x\,dx.}
Since cos x is the real part of e , we know that
∫
e
x
cos
x
d
x
=
Re
∫
e
x
e
i
x
d
x
.
{\displaystyle \int e^{x}\cos x\,dx=\operatorname {Re} \int e^{x}e^{ix}\,dx.}
The integral on the right is easy to evaluate:
∫
e
x
e
i
x
d
x
=
∫
e
(
1
+
i
)
x
d
x
=
e
(
1
+
i
)
x
1
+
i
+
C
.
{\displaystyle \int e^{x}e^{ix}\,dx=\int e^{(1+i)x}\,dx={\frac {e^{(1+i)x}}{1+i}}+C.}
Thus:
∫
e
x
cos
x
d
x
=
Re
(
e
(
1
+
i
)
x
1
+
i
)
+
C
=
e
x
Re
(
e
i
x
1
+
i
)
+
C
=
e
x
Re
(
e
i
x
(
1
−
i
)
2
)
+
C
=
e
x
cos
x
+
sin
x
2
+
C
.
{\displaystyle {\begin{aligned}\int e^{x}\cos x\,dx&=\operatorname {Re} \left({\frac {e^{(1+i)x}}{1+i}}\right)+C\\&=e^{x}\operatorname {Re} \left({\frac {e^{ix}}{1+i}}\right)+C\\&=e^{x}\operatorname {Re} \left({\frac {e^{ix}(1-i)}{2}}\right)+C\\&=e^{x}{\frac {\cos x+\sin x}{2}}+C.\end{aligned}}}
Fractions
In general, this technique may be used to evaluate any fractions involving trigonometric functions. For example, consider the integral
∫
1
+
cos
2
x
cos
x
+
cos
3
x
d
x
.
{\displaystyle \int {\frac {1+\cos ^{2}x}{\cos x+\cos 3x}}\,dx.}
Using Euler's identity, this integral becomes
1
2
∫
6
+
e
2
i
x
+
e
−
2
i
x
e
i
x
+
e
−
i
x
+
e
3
i
x
+
e
−
3
i
x
d
x
.
{\displaystyle {\frac {1}{2}}\int {\frac {6+e^{2ix}+e^{-2ix}}{e^{ix}+e^{-ix}+e^{3ix}+e^{-3ix}}}\,dx.}
If we now make the substitution
u
=
e
i
x
{\displaystyle u=e^{ix}}
, the result is the integral of a rational function :
−
i
2
∫
1
+
6
u
2
+
u
4
1
+
u
2
+
u
4
+
u
6
d
u
.
{\displaystyle -{\frac {i}{2}}\int {\frac {1+6u^{2}+u^{4}}{1+u^{2}+u^{4}+u^{6}}}\,du.}
One may proceed using partial fraction decomposition .
See also
References
Kilburn, Korey (2019). "Applying Euler's Formula to Integrate" . American Review of Mathematics and Statistics . 7 . American Research Institute for Policy Development: 1–2. doi :10.15640/arms.v7n2a1 (inactive 1 November 2024). eISSN 2374-2356 . hdl :2158/1183208 . ISSN 2374-2348 . {{cite journal }}
: CS1 maint: DOI inactive as of November 2024 (link )
Weisstein, Eric W. "Euler Formula" . mathworld.wolfram.com . Retrieved 2021-03-17.
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑