Misplaced Pages

Johansen test

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Johansen cointegration test) Time series statistical test

In statistics, the Johansen test, named after Søren Johansen, is a procedure for testing cointegration of several, say k, I(1) time series. This test permits more than one cointegrating relationship so is more generally applicable than the Engle-Granger test which is based on the Dickey–Fuller (or the augmented) test for unit roots in the residuals from a single (estimated) cointegrating relationship.

There are two types of Johansen test, either with trace or with eigenvalue, and the inferences might be a little bit different. The null hypothesis for the trace test is that the number of cointegration vectors is r = r* < k, vs. the alternative that r = k. Testing proceeds sequentially for r* = 1,2, etc. and the first non-rejection of the null is taken as an estimate of r. The null hypothesis for the "maximum eigenvalue" test is as for the trace test but the alternative is r = r* + 1 and, again, testing proceeds sequentially for r* = 1,2,etc., with the first non-rejection used as an estimator for r.

Just like a unit root test, there can be a constant term, a trend term, both, or neither in the model. For a general VAR(p) model:

X t = μ + Φ D t + Π p X t p + + Π 1 X t 1 + e t , t = 1 , , T {\displaystyle X_{t}=\mu +\Phi D_{t}+\Pi _{p}X_{t-p}+\cdots +\Pi _{1}X_{t-1}+e_{t},\quad t=1,\dots ,T}

There are two possible specifications for error correction: that is, two vector error correction models (VECM):

1. The longrun VECM:

Δ X t = μ + Φ D t + Π X t p + Γ p 1 Δ X t p + 1 + + Γ 1 Δ X t 1 + ε t , t = 1 , , T {\displaystyle \Delta X_{t}=\mu +\Phi D_{t}+\Pi X_{t-p}+\Gamma _{p-1}\Delta X_{t-p+1}+\cdots +\Gamma _{1}\Delta X_{t-1}+\varepsilon _{t},\quad t=1,\dots ,T}
where
Γ i = Π 1 + + Π i I , i = 1 , , p 1. {\displaystyle \Gamma _{i}=\Pi _{1}+\cdots +\Pi _{i}-I,\quad i=1,\dots ,p-1.\,}

2. The transitory VECM:

Δ X t = μ + Φ D t + Π X t 1 j = 1 p 1 Γ j Δ X t j + ε t , t = 1 , , T {\displaystyle \Delta X_{t}=\mu +\Phi D_{t}+\Pi X_{t-1}-\sum _{j=1}^{p-1}\Gamma _{j}\Delta X_{t-j}+\varepsilon _{t},\quad t=1,\cdots ,T}
where
Γ i = ( Π i + 1 + + Π p ) , i = 1 , , p 1. {\displaystyle \Gamma _{i}=\left(\Pi _{i+1}+\cdots +\Pi _{p}\right),\quad i=1,\dots ,p-1.\,}

The two are the same. In both VECM,

Π = Π 1 + + Π p I . {\displaystyle \Pi =\Pi _{1}+\cdots +\Pi _{p}-I.\,}

Inferences are drawn on Π, and they will be the same, so is the explanatory power.

References

  1. Johansen, Søren (1991). "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models". Econometrica. 59 (6): 1551–1580. doi:10.2307/2938278. JSTOR 2938278.
  2. For the presence of I(2) variables see Ch. 9 of Johansen, Søren (1995). Likelihood-based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press. ISBN 978-0-19-877450-1.
  3. Davidson, James (2000). Econometric Theory. Wiley. ISBN 0-631-21584-0.
  4. Hänninen, R. (2012). "The Law of One Price in United Kingdom Soft Sawnwood Imports – A Cointegration Approach". Modern Time Series Analysis in Forest Products Markets. Springer. p. 66. ISBN 978-94-011-4772-9.

Further reading

Statistics
Descriptive statistics
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Data collection
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical inference
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical / Multivariate / Time-series / Survival analysis
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Applications
Biostatistics
Engineering statistics
Social statistics
Spatial statistics


Stub icon

This Econometrics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Johansen test Add topic