In mathematics, Kachurovskii's theorem is a theorem relating the convexity of a function on a Banach space to the monotonicity of its Fréchet derivative.
Statement of the theorem
Let K be a convex subset of a Banach space V and let f : K → R ∪ {+∞} be an extended real-valued function that is Fréchet differentiable with derivative df(x) : V → R at each point x in K. (In fact, df(x) is an element of the continuous dual space V.) Then the following are equivalent:
- f is a convex function;
- for all x and y in K,
- df is an (increasing) monotone operator, i.e., for all x and y in K,
References
- Kachurovskii, R. I. (1960). "On monotone operators and convex functionals". Uspekhi Mat. Nauk. 15 (4): 213–215.
- Showalter, Ralph E. (1997). Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs 49. Providence, RI: American Mathematical Society. pp. 80. ISBN 0-8218-0500-2. MR1422252 (Proposition 7.4)
Functional analysis (topics – glossary) | |||||
---|---|---|---|---|---|
Spaces |
| ||||
Theorems | |||||
Operators | |||||
Algebras | |||||
Open problems | |||||
Applications | |||||
Advanced topics | |||||