Misplaced Pages

Lanthanide trichloride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Family of inorganic compound with the formula LnCl3

Lanthanide trichlorides are a family of inorganic compound with the formula LnCl3, where Ln stands for a lanthanide metal. The trichlorides are standard reagents in applied and academic chemistry of the lanthanides. They exist as anhydrous solids and as hydrates.

Properties

The anhydrous solids have melting points range from ca. 582 (Tb) - 925 °C (Lu). They are generally pale colored, often white. As coordination polymers, they only dissolve in donor solvents, including water.

Lanthanide trichlorides
MCl3 color structure type f-configuration comment
ScCl3 colorless AlCl3-type f not classified as a lanthanide usually
YCl3 colorless AlCl3-type f not classified as a lanthanide usually
LaCl3 colorless UCl3-type f diamagnetic
CeCl3 colorless UCl3-type f, doublet -
PrCl3 green UCl3-type f, triplet -
NdCl3 pink UCl3-type f, quartet -
PmCl3 green UCl3-type f, quintet radioactive
SmCl3 yellow UCl3-type f, sextet -
EuCl3 yellow UCl3-type f, septet -
GdCl3 colorless UCl3-type f, octet symmetrical electronic shell
TbCl3 white PuBr3-type f, septet -
DyCl3 white AlCl3-type f, sextet -
HoCl3 yellow AlCl3-type f, quintet -
ErCl3 violet AlCl3-type f, quartet -
TmCl3 yellow AlCl3-type f, triplet -
YbCl3 colorless YCl3-type f, doublet -
LuCl3 colorless AlCl3-type f diamagnetic

Preparation

The lanthanide oxides and carbonates dissolve in hydrochloric acid to give chloride salt of the hydrated cations:

M2O3 + 6 HCl + n H2O → 2 Cl3

Industrial routes

Anhydrous trichlorides are produced commercially by carbothermic reaction of the oxide:

M2O3 + 3 Cl2 + 3 C → 2 MCl3 + 3 CO

Ammonium chloride route

The ammonium chloride route refers to a general procedure to produce anhydrous lanthanide chlorides. The method has the advantages of being general for the 14 lanthanides and it produces air-stable intermediates that resist hydrolysis. The use of ammonium chloride as a reagent is convenient because the salt is anhydrous, even when handled in air. Ammonium chloride is also attractive because it thermally decomposes to volatile products at temperatures compatible with the stability of the trichloride targets.

Step 1
preparation of ammonium lanthanide chlorides

The reaction of an intimate mixture of lanthanide oxides with excess ammonium chloride produces anhydrous ammonium salts of the penta- and hexachlorides. Typical reaction conditions are hours at 230-250 °C. Some lanthanides (as well as scandium and yttrium) form pentachlorides:

M2O3 + 10 NH4Cl → 2 (NH4)2MCl5 + 3 H2O + 6 NH3

(M = Dy, Ho, Er, Tm, Lu, Yb, Y, Sc)

Tb4O7 + 22 NH4Cl → 4 (NH4)2TbCl5 + 7 H2O + 14 NH3

Other lanthanides for hexachlorides:

M2O3 + 12 NH4Cl → 2 (NH4)3MCl6 + 3 H2O + 6 NH3

(M = La, Ce, Nd, Pm, Sm, Eu, Gd)

Pr6O11 + 40 NH4Cl → 6 (NH4)3PrCl6 + 11 H2O + 22 NH3

These reactions can also start with the metals, e.g.:

Y + 5 NH4Cl → (NH4)2YCl5 + 1.5 H2 + 3 NH3
Step 2
thermolysis of ammonium lanthanide chlorides

The ammonium lanthanum chlorides are converted to the trichlorides by heating in a vacuum. Typical reaction temperatures are 350–400 °C:

(NH4)2MCl5 → MCl3 + 2 HCl + 2 NH3
(NH4)3MCl6 → MCl3 + 3 HCl + 3 NH3

Other methods

Hydrated lanthanide trichlorides dehydrate under a hot stream of hydrogen chloride.

Structures

Structure of GdCl36H2O, which consists of centers. The coordination spheres are interconnected by hydrogen bonds between the protons and both the coordinated and the ionic chlorides.

As indicated in the table, the anhydrous trichlorides follow two main motifs, UCl3 and YCl3. The UCl3 structure features 9-coordinate metal centers. The PuBr3 structure, adopted uniquely by TbCl3, features 8-coordinated metals. The remaining later metals are 6-coordinate as is aluminium trichloride.

Reactions

Lanthanide trichlorides are commercial precursors to the metals by reduction, e.g. with aluminium:

LnCl3 + Al → Ln + AlCl3

In some cases, the trifluoride is preferred.

They react with humid air to give oxychlorides:

LnCl3 + H2O → LnOCl + 2 HCl

For synthetic chemists, this reaction is a problematic since the oxychlorides are less reactive.

References

  1. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  2. ^ I. McGill (2005). "Rare Earth Elements". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a22_607. ISBN 978-3527306732.
  3. ^ Brauer, G., ed. (1963). Handbook of Preparative Inorganic Chemistry (2nd ed.). New York: Academic Press.
  4. ^ Meyer, G. (1989). "The Ammonium Chloride Route to Anhydrous Rare Earth Chlorides—The Example of Ycl 3". The Ammonium Chloride Route to Anhydrous Rare Earth Chlorides-The Example of YCl3. Inorganic Syntheses. Vol. 25. pp. 146–150. doi:10.1002/9780470132562.ch35. ISBN 978-0-470-13256-2.
  5. Edelmann, F. T.; Poremba, P. (1997). Herrmann, W. A. (ed.). Synthetic Methods of Organometallic and Inorganic Chemistry. Vol. VI. Stuttgart: Georg Thieme Verlag. ISBN 978-3-13-103021-4.
  6. Habenschuss, A.; Spedding, F. H. (1980). "Dichlorohexaaquagadolinium(III) Chloride (GdCl2(H2O)6)C". Crystal Structure Communications. 9: 213-218.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Cotton, Simon A. (2011). "Scandium, Yttrium & the Lanthanides: Inorganic & Coordination Chemistry". Encyclopedia of Inorganic and Bioinorganic Chemistry. doi:10.1002/9781119951438.eibc0195. ISBN 9781119951438.
Lanthanum compounds
Salts and covalent derivatives of the chloride ion
HCl He
LiCl BeCl2 B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaCl MgCl2 AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2 Ar
KCl CaCl
CaCl2
ScCl3 TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2 CuCl
CuCl2
ZnCl2 GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrCl Kr
RbCl SrCl2 YCl3 ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3 PdCl2 AgCl CdCl2 InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsCl BaCl2 * LuCl3 HfCl4 TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
AuCl
(Au)2
AuCl3
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3 PoCl2
PoCl4
AtCl Rn
FrCl RaCl2 ** LrCl3 RfCl4 DbCl5 SgO2Cl2 BhO3Cl Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaCl3 CeCl3 PrCl3 NdCl2
NdCl3
PmCl3 SmCl2
SmCl3
EuCl2
EuCl3
GdCl3 TbCl3 DyCl2
DyCl3
HoCl3 ErCl3 TmCl2
TmCl3
YbCl2
YbCl3
** AcCl3 ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3 PuCl3 AmCl2
AmCl3
CmCl3 BkCl3 CfCl3
CfCl2
EsCl2
EsCl3
FmCl2 MdCl2 NoCl2
Categories: