Misplaced Pages

External globus pallidus

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Lateral globus pallidus) Part of the globus pallidus
External globus pallidus
External globus pallidus (GPe) seen in 2nd image from the left
Details
Part ofGlobus pallidus
Identifiers
Latinglobus pallidus externus, globus pallidus lateralis
Acronym(s)GPe
NeuroNames232
NeuroLex IDbirnlex_1610
TA98A14.1.09.509
TA25570
FMA61839
Anatomical terms of neuroanatomy[edit on Wikidata]

The external globus pallidus (GPe or lateral globus pallidus) combines with the internal globus pallidus (GPi) to form the globus pallidus, an anatomical subset of the basal ganglia. Globus pallidus means "pale globe" in Latin, indicating its appearance. The external globus pallidus is the segment of the globus pallidus that is relatively further (lateral) from the midline of the brain.

The GPe is predominantly composed of inhibitory GABAergic neurons that project axons to the subthalamic nucleus (in the diencephalon), the striatum, internal globus pallidus (GPi) and substantia nigra pars reticulata.

The GPe is particular in comparison to the other elements of the set by the fact that it does not work as an output base of the basal ganglia (not sending axons to the thalamus) but as the main regulator of the basal ganglia system. It is sometimes used as a target for deep brain stimulation as a treatment for Parkinson's disease.

Function

Direct and indirect striatopallidal pathways: Glutamatergic pathways are red, dopaminergic are magenta and GABAergic pathways are blue. STN: Subthalamic Nucleus SNr: Substantia Nigra pars reticulata SNc: Substantia Nigra pars compacta GPi: Medial globus pallidus

Indirect pathway

The basal ganglia functions to tonically inhibit movement, mainly in the absence of motor cortex command, via GABAergic inhibition of the ventral lateral nucleus and ventral anterior nucleus of the thalamus, as well as the superior colliculus and mesopontine tegmentum of the brain stem. When movement is required, the cerebral cortex sends commands to the striatum, which directly inhibits the medial globus pallidus and substantia nigra pars reticulata, decreasing thalamus and brainstem inhibition. As the pathway from the striatum to the medial globus pallidus is monosynaptic (containing one synapse), it is called the direct pathway.

The indirect pathway, which contains the GPe and the subthalamic nucleus, functions to modulate the effects of the direct pathway. The GPe acts as an inhibitory "control device", adjusting subthalamic nucleus neuronal activity via GABAergic output.

When movement adjustment is required, striatal inhibitory GABAergic axons are sent to the GPe, decreasing inhibition of the subthalamic nucleus. The subthalamic nucleus' glutamatergic neurons then stimulate the GPi and substantia nigra pars reticulata.

This multisynaptic indirect striatopallidal pathway allows for regulated excitatory input from the subthalamic nucleus to the GPi and substantia nigra pars reticulata. This combines with direct pathway inhibition in the GPi, allowing for fine tuned basal ganglia output, and more controlled movement.

Related pathology

Lateral globus pallidus dysfunction has been observed in the following conditions:

References

  1. ^ Parent, André; Hazrati, Lili-Naz (1995-01-01). "Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop". Brain Research Reviews. 20 (1): 91–127. doi:10.1016/0165-0173(94)00007-C. PMID 7711769. S2CID 28252990.
  2. Parent, André; Hazrati, Lili-Naz (1995-01-01). "Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry". Brain Research Reviews. 20 (1): 128–154. doi:10.1016/0165-0173(94)00008-D. PMID 7711765. S2CID 20808851.
  3. Hegeman, Daniel J.; Hong, Ellie S.; Hernández, Vivian M.; Chan, C. Savio (2016-05-01). "The external globus pallidus: progress and perspectives". European Journal of Neuroscience. 43 (10): 1239–1265. doi:10.1111/ejn.13196. ISSN 1460-9568. PMC 4874844. PMID 26841063.
Rostral basal ganglia of the human brain and associated structures
Basal ganglia
Grey matter
Striatum
Other
White matter
Rhinencephalon
Grey matter
White matter
Other basal forebrain
Grey matter
White matter
Archicortex:
Hippocampal formation/
Hippocampus anatomy
Grey matter
White matter
Brain and spinal cord: neural tracts and fasciculi
Sensory
DCML
:
:
:
Anterolateral/
pain
Fast/lateral

2° (Spinomesencephalic tractSuperior colliculus of Midbrain tectum)

Slow/medial
Motor
Pyramidal
Extrapyramidal
flexion:
flexion:
extension:
extension:
Basal ganglia
direct:1° (Motor cortexStriatum) → 2° (GPi) → 3° (Lenticular fasciculus/Ansa lenticularisThalamic fasciculusVL of Thalamus) → 4° (Thalamocortical radiationsSupplementary motor area) → 5° (Motor cortex)
indirect:1° (Motor cortexStriatum) → 2° (GPe) → 3° (Subthalamic fasciculusSubthalamic nucleus) → 4° (Subthalamic fasciculusGPi) → 5° (Lenticular fasciculus/Ansa lenticularisThalamic fasciculusVL of Thalamus) → 6° (Thalamocortical radiationsSupplementary motor area) → 7° (Motor cortex)
nigrostriatal pathway:
Cerebellar
Afferent
Efferent
Bidirectional:
Spinocerebellar
Unconscious
proprioception
Reflex arc


Stub icon

This neuroanatomy article is a stub. You can help Misplaced Pages by expanding it.

Categories: