Special mathematical function
In mathematics, the Lerch transcendent, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about a similar function in 1887. The Lerch transcendent, is given by:
- .
It only converges for any real number , where , or , and .
Special cases
The Lerch transcendent is related to and generalizes various special functions.
The Lerch zeta function is given by:
The Hurwitz zeta function is the special case
The polylogarithm is another special case:
The Riemann zeta function is a special case of both of the above:
The Dirichlet eta function:
The Dirichlet beta function:
The Legendre chi function:
The inverse tangent integral:
The polygamma functions for positive integers n:
The Clausen function:
Integral representations
The Lerch transcendent has an integral representation:
The proof is based on using the integral definition of the Gamma function to write
and then interchanging the sum and integral. The resulting integral representation converges for Re(s) > 0, and Re(a) > 0. This analytically continues to z outside the unit disk. The integral formula also holds if z = 1, Re(s) > 1, and Re(a) > 0; see Hurwitz zeta function.
A contour integral representation is given by
where C is a Hankel contour counterclockwise around the positive real axis, not enclosing any of the points (for integer k) which are poles of the integrand. The integral assumes Re(a) > 0.
Other integral representations
A Hermite-like integral representation is given by
for
and
for
Similar representations include
and
holding for positive z (and more generally wherever the integrals converge). Furthermore,
The last formula is also known as Lipschitz formula.
Identities
For λ rational, the summand is a root of unity, and thus may be expressed as a finite sum over the Hurwitz zeta function. Suppose with and . Then and .
Various identities include:
and
and
Series representations
A series representation for the Lerch transcendent is given by
(Note that is a binomial coefficient.)
The series is valid for all s, and for complex z with Re(z)<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.
A Taylor series in the first parameter was given by Arthur Erdélyi. It may be written as the following series, which is valid for
If n is a positive integer, then
where is the digamma function.
A Taylor series in the third variable is given by
where is the Pochhammer symbol.
Series at a = −n is given by
A special case for n = 0 has the following series
where is the polylogarithm.
An asymptotic series for
for
and
for
An asymptotic series in the incomplete gamma function
for
The representation as a generalized hypergeometric function is
Asymptotic expansion
The polylogarithm function is defined as
Let
For and , an asymptotic expansion of for large and fixed and is given by
for , where is the Pochhammer symbol.
Let
Let be its Taylor coefficients at . Then for fixed and ,
as .
Software
The Lerch transcendent is implemented as LerchPhi in Maple and Mathematica, and as lerchphi in mpmath and SymPy.
References
- Lerch, Mathias (1887), "Note sur la fonction ", Acta Mathematica (in French), 11 (1–4): 19–24, doi:10.1007/BF02612318, JFM 19.0438.01, MR 1554747, S2CID 121885446
- Guillera & Sondow 2008.
- ^ Guillera & Sondow 2008, p. 248–249
- Weisstein, Eric W. "Inverse Tangent Integral". mathworld.wolfram.com. Retrieved 2024-10-13.
- The polygamma function has the series representation
which holds for integer values of m > 0 and any complex z not equal to a negative integer.
- Weisstein, Eric W. "Polygamma Function". mathworld.wolfram.com. Retrieved 2024-10-14.
- Weisstein, Eric W. "Clausen Function". mathworld.wolfram.com. Retrieved 2024-10-14.
- Bateman & Erdélyi 1953, p. 27
- Guillera & Sondow 2008, Lemma 2.1 and 2.2
- Bateman & Erdélyi 1953, p. 28
- "The Analytic Continuation of the Lerch Transcendent and the Riemann Zeta Function". 27 April 2020. Retrieved 28 April 2020.
- B. R. Johnson (1974). "Generalized Lerch zeta function". Pacific J. Math. 53 (1): 189–193. doi:10.2140/pjm.1974.53.189.
- Gottschalk, J. E.; Maslen, E. N. (1988). "Reduction formulae for generalized hypergeometric functions of one variable". J. Phys. A. 21 (9): 1983–1998. Bibcode:1988JPhA...21.1983G. doi:10.1088/0305-4470/21/9/015.
- Ferreira, Chelo; López, José L. (October 2004). "Asymptotic expansions of the Hurwitz–Lerch zeta function". Journal of Mathematical Analysis and Applications. 298 (1): 210–224. doi:10.1016/j.jmaa.2004.05.040.
- Cai, Xing Shi; López, José L. (10 June 2019). "A note on the asymptotic expansion of the Lerch's transcendent". Integral Transforms and Special Functions. 30 (10): 844–855. arXiv:1806.01122. doi:10.1080/10652469.2019.1627530. S2CID 119619877.
- Apostol, T. M. (2010), "Lerch's Transcendent", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248..
- Bateman, H.; Erdélyi, A. (1953), Higher Transcendental Functions, Vol. I (PDF), New York: McGraw-Hill. (See § 1.11, "The function Ψ(z,s,v)", p. 27)
- Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) . "9.55.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products. Translated by Scripta Technica, Inc. (8 ed.). Academic Press. ISBN 978-0-12-384933-5. LCCN 2014010276.
- Guillera, Jesus; Sondow, Jonathan (2008), "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent", The Ramanujan Journal, 16 (3): 247–270, arXiv:math.NT/0506319, doi:10.1007/s11139-007-9102-0, MR 2429900, S2CID 119131640. (Includes various basic identities in the introduction.)
- Jackson, M. (1950), "On Lerch's transcendent and the basic bilateral hypergeometric series 2ψ2", J. London Math. Soc., 25 (3): 189–196, doi:10.1112/jlms/s1-25.3.189, MR 0036882.
- Johansson, F.; Blagouchine, Ia. (2019), "Computing Stieltjes constants using complex integration", Mathematics of Computation, 88 (318): 1829–1850, arXiv:1804.01679, doi:10.1090/mcom/3401, MR 3925487, S2CID 4619883.
- Laurinčikas, Antanas; Garunkštis, Ramūnas (2002), The Lerch zeta-function, Dordrecht: Kluwer Academic Publishers, ISBN 978-1-4020-1014-9, MR 1979048.
External links
- Aksenov, Sergej V.; Jentschura, Ulrich D. (2002), C and Mathematica Programs for Calculation of Lerch's Transcendent.
- Ramunas Garunkstis, Home Page (2005) (Provides numerous references and preprints.)
- Garunkstis, Ramunas (2004). "Approximation of the Lerch Zeta Function" (PDF). Lithuanian Mathematical Journal. 44 (2): 140–144. doi:10.1023/B:LIMA.0000033779.41365.a5. S2CID 123059665.
- Kanemitsu, S.; Tanigawa, Y.; Tsukada, H. (2015). "A generalization of Bochner's formula". Kanemitsu, S.; Tanigawa, Y.; Tsukada, H. (2004). "A generalization of Bochner's formula". Hardy-Ramanujan Journal. 27. doi:10.46298/hrj.2004.150.
- Weisstein, Eric W. "Lerch Transcendent". MathWorld.
- Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Lerch's Transcendent", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
Category: