Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
The constant may be positive or negative. The two curves with constants and are reflections of each other across the line . The period of is given the period of the sinusoid .
The limaçon trisectrix is composed of two loops.
The outer loop is defined when on the polar angle interval , and is symmetric about the polar axis. The point furthest from the pole on the outer loop has the coordinates .
The inner loop is defined when on the polar angle interval , and is symmetric about the polar axis. The point furthest from the pole on the inner loop has the coordinates , and on the polar axis, is one-third of the distance from the pole compared to the furthest point of the outer loop.
In polar coordinates, the shape of is the same as that of the rose . Corresponding points of the rose are a distance to the left of the limaçon's points when , and to the right when .
As a rose, the curve has the structure of a single petal with two loops that is inscribed in the circle and is symmetric about the polar axis.
The inverse of this rose is a trisectrix since the inverse has the same shape as the trisectrix of Maclaurin.
Relationship with the sectrix of Maclaurin
See the article Sectrix of Maclaurin on the limaçon as an instance of the sectrix.
Trisection properties
The outer and inner loops of the limaçon trisectrix have angle trisection properties. Theoretically, an angle may be trisected using a method with either property, though practical considerations may limit use.
Outer loop trisectrix property
The construction of the outer loop of reveals its angle trisection properties. The outer loop exists on the interval . Here, we examine the trisectrix property of the portion of the outer loop above the polar axis, i.e., defined on the interval .
First, note that polar equation is a circle with radius , center on the polar axis, and has a diameter that is tangent to the line at the pole . Denote the diameter containing the pole as , where is at .
Second, consider any chord of the circle with the polar angle . Since is a right triangle, . The corresponding point on the outer loop has coordinates , where .
Given this construction, it is shown that and two other angles trisect as follows:
, as it is the central angle for on the circle .
The base angles of isosceles triangle measure – specifically, .
The apex angle of isosceles triangle is supplementary with , and so, . Consequently the base angles, and measure .
. Thus is trisected, since .
Note that also , and .
The upper half of the outer loop can trisect any central angle of because implies which is in the domain of the outer loop.
Inner loop trisectrix property
The inner loop of the limaçon trisectrix has the desirable property that the trisection of an angle is internal to the angle being trisected. Here, we examine the inner loop of that lies above the polar axis, which is defined on the polar angle interval . The trisection property is that given a central angle that includes a point lying on the unit circle with center at the pole, , has a measure three times the measure of the polar angle of the point at the intersection of chord and the inner loop, where is at .
In Cartesian coordinates the equation of is , where , which is the polar equation
, where and .
(Note: atan2(y,x) gives the polar angle of the Cartesian coordinate point (x,y).)
Since the normal line to is , it bisects the apex of isosceles triangle , so and the polar coordinates of is .
With respect to the limaçon, the range of polar angles that defines the inner loop is problematic because the range of polar angles subject to trisection falls in the range . Furthermore, on its native domain, the radial coordinates of the inner loop are non-positive. The inner loop then is equivalently re-defined within the polar angle range of interest and with non-negative radial coordinates as , where . Thus, the polar coordinate of is determined by
.
The last equation has two solutions, the first being: , which results in , the polar axis, a line that intersects both curves but not at on the unit circle.
The second solution is based on the identity which is expressed as
, which implies ,
and shows that demonstrating the larger angle has been trisected.
The upper half of the inner loop can trisect any central angle of because implies which is in the domain of the re-defined loop.
Line segment trisection property
The limaçon trisectrix trisects the line segment on the polar axis that serves as its axis of symmetry. Since the outer loop extends to the point and the inner loop to the point , the limaçon trisects the segment with endpoints at the pole (where the two loops intersect) and the point , where the total length of is three times the length running from the pole to the other end of the inner loop along the segment.
Yates, Robert C. (1942). The Trisection Problem (PDF) (The National Council of Teachers of Mathematics ed.). Baton Rouge, Louisiana: Franklin Press. pp. 23–25.
"The Trisection Problem" by Robert C. Yates published in 1942 and reprinted by the National Council of Teachers of Mathematics available at the U.S. Dept. of Education ERIC site.