Misplaced Pages

Near-field magnetic induction communication

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
See also: Near field communication
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Near-field magnetic induction communication" – news · newspapers · books · scholar · JSTOR (October 2008) (Learn how and when to remove this message)
This article reads like a press release or a news article and may be largely based on routine coverage. Please help improve this article and add independent sources. (May 2010)
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (December 2009) (Learn how and when to remove this message)
(Learn how and when to remove this message)

A near-field magnetic induction (NFMI) communication system is a short range wireless physical layer that communicates by coupling a tight, low-power, non-propagating magnetic field between devices. The concept is for a transmitter coil in one device to modulate a magnetic field which is measured by means of a receiver coil in another device.

Background: technical concepts

NFMI systems differ from other wireless communications in that most conventional wireless RF systems use an antenna to generate, transmit, and propagate an electromagnetic wave. In these types of systems all of the transmission energy is designed to radiate into free space. This type of transmission is referred to as "far-field."

According to Maxwell's equation for a radiating wire, the power density of far-field transmissions attenuates or rolls off at a rate proportional to the inverse of the range to the second power (1/r) or −20 dB per decade. This slow attenuation over distance allows far-field transmissions to communicate effectively over a long range. The properties that make long range communication possible are a disadvantage for short range communication systems.

The NFMI system uses a short range (less than 2 meters).

The standard modulation schemes used in typical RF communications (amplitude modulation, phase modulation, and frequency modulation) can be used in near-field magnetic induction system

NFMI systems are designed to contain transmission energy within the localized magnetic field. This magnetic field energy resonates around the communication system, but does not radiate into free space. This type of transmission is referred to as "near-field." The power density of near-field transmissions is extremely restrictive and attenuates or rolls off at a rate proportional to the inverse of the range to the sixth power (1/r) or −60 dB per decade.

In current commercial implementations of near-field communications, the most commonly used carrier frequency is 13.56 MHz and has a wavelength (λ) of 22.1 meters. The crossover point between near-field and far-field occurs at approximately λ/2π. At this frequency the crossover occurs at 3.52 meters, at which point the propagating energy from the NFMI system conforms to the same propagation rules as any far-field system; rolling off at −20 dB per decade. At this distance the propagated energy levels are −40 dB to −60 dB (10,000 to 1,000,000 times) lower than an equivalent intentional far-field system.

Use

Near-field magnetic induction technology has been in use by the company FreeLinc, using NFMI to create a secure wireless communication between two-way radio accessories. This is done by creating a magnetic communication "bubble" around headsets, speaker-microphones and radios. This magnetic bubble has a radius of approximately 1.5 meters, is immune from radio frequency (RF) interference and virtually secure from eavesdropping. An eavesdropper would have to be standing next to the radio, within the magnetic bubble, to intercept wireless transmissions to and from a microphone or headset.

NFMI was used in the DEF CON 27 conference badge to allow two-way communication between the badges.

See also

References

  1. "NFMI by FreeLinc".
  2. DEF CON 27 - Joe Grand - Behind the Scenes of the DEF CON 27 Badge. August 9, 2019. Event occurs at 15:02 and 20:35. Retrieved August 21, 2019.

External links

Categories: