Misplaced Pages

Positive-definite function on a group

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, and specifically in operator theory, a positive-definite function on a group relates the notions of positivity, in the context of Hilbert spaces, and algebraic groups. It can be viewed as a particular type of positive-definite kernel where the underlying set has the additional group structure.

Definition

Let G {\displaystyle G} be a group, H {\displaystyle H} be a complex Hilbert space, and L ( H ) {\displaystyle L(H)} be the bounded operators on H {\displaystyle H} . A positive-definite function on G {\displaystyle G} is a function F : G L ( H ) {\displaystyle F:G\to L(H)} that satisfies

s , t G F ( s 1 t ) h ( t ) , h ( s ) 0 , {\displaystyle \sum _{s,t\in G}\langle F(s^{-1}t)h(t),h(s)\rangle \geq 0,}

for every function h : G H {\displaystyle h:G\to H} with finite support ( h {\displaystyle h} takes non-zero values for only finitely many s {\displaystyle s} ).

In other words, a function F : G L ( H ) {\displaystyle F:G\to L(H)} is said to be a positive-definite function if the kernel K : G × G L ( H ) {\displaystyle K:G\times G\to L(H)} defined by K ( s , t ) = F ( s 1 t ) {\displaystyle K(s,t)=F(s^{-1}t)} is a positive-definite kernel. Such a kernel is G {\displaystyle G} -symmetric, that is, it invariant under left G {\displaystyle G} -action: K ( s , t ) = K ( r s , r t ) , r G {\displaystyle K(s,t)=K(rs,rt),\quad \forall r\in G} When G {\displaystyle G} is a locally compact group, the definition generalizes by integration over its left-invariant Haar measure μ {\displaystyle \mu } . A positive-definite function on G {\displaystyle G} is a continuous function F : G L ( H ) {\displaystyle F:G\to L(H)} that satisfies s , t G F ( s 1 t ) h ( t ) , h ( s ) μ ( d s ) μ ( d t ) 0 , {\displaystyle \int _{s,t\in G}\langle F(s^{-1}t)h(t),h(s)\rangle \;\mu (ds)\mu (dt)\geq 0,} for every continuous function h : G H {\displaystyle h:G\to H} with compact support.

Examples

The constant function F ( g ) = I {\displaystyle F(g)=I} , where I {\displaystyle I} is the identity operator on H {\displaystyle H} , is positive-definite.

Let G {\displaystyle G} be a finite abelian group and H {\displaystyle H} be the one-dimensional Hilbert space C {\displaystyle \mathbb {C} } . Any character χ : G C {\displaystyle \chi :G\to \mathbb {C} } is positive-definite. (This is a special case of unitary representation.)

To show this, recall that a character of a finite group G {\displaystyle G} is a homomorphism from G {\displaystyle G} to the multiplicative group of norm-1 complex numbers. Then, for any function h : G C {\displaystyle h:G\to \mathbb {C} } , s , t G χ ( s 1 t ) h ( t ) h ( s ) ¯ = s , t G χ ( s 1 ) h ( t ) χ ( t ) h ( s ) ¯ = s χ ( s 1 ) h ( s ) ¯ t h ( t ) χ ( t ) = | t h ( t ) χ ( t ) | 2 0. {\displaystyle \sum _{s,t\in G}\chi (s^{-1}t)h(t){\overline {h(s)}}=\sum _{s,t\in G}\chi (s^{-1})h(t)\chi (t){\overline {h(s)}}=\sum _{s}\chi (s^{-1}){\overline {h(s)}}\sum _{t}h(t)\chi (t)=\left|\sum _{t}h(t)\chi (t)\right|^{2}\geq 0.} When G = R n {\displaystyle G=\mathbb {R} ^{n}} with the Lebesgue measure, and H = C m {\displaystyle H=\mathbb {C} ^{m}} , a positive-definite function on G {\displaystyle G} is a continuous function F : R n C m × m {\displaystyle F:\mathbb {R} ^{n}\to \mathbb {C} ^{m\times m}} such that x , y R n h ( x ) F ( x y ) h ( y ) d x d y 0 {\displaystyle \int _{x,y\in \mathbb {R} ^{n}}h(x)^{\dagger }F(x-y)h(y)\;dxdy\geq 0} for every continuous function h : R n C m {\displaystyle h:\mathbb {R} ^{n}\to \mathbb {C} ^{m}} with compact support.

Unitary representations

A unitary representation is a unital homomorphism Φ : G L ( H ) {\displaystyle \Phi :G\to L(H)} where Φ ( s ) {\displaystyle \Phi (s)} is a unitary operator for all s {\displaystyle s} . For such Φ {\displaystyle \Phi } , Φ ( s 1 ) = Φ ( s ) {\displaystyle \Phi (s^{-1})=\Phi (s)^{*}} .

Positive-definite functions on G {\displaystyle G} are intimately related to unitary representations of G {\displaystyle G} . Every unitary representation of G {\displaystyle G} gives rise to a family of positive-definite functions. Conversely, given a positive-definite function, one can define a unitary representation of G {\displaystyle G} in a natural way.

Let Φ : G L ( H ) {\displaystyle \Phi :G\to L(H)} be a unitary representation of G {\displaystyle G} . If P L ( H ) {\displaystyle P\in L(H)} is the projection onto a closed subspace H {\displaystyle H'} of H {\displaystyle H} . Then F ( s ) = P Φ ( s ) {\displaystyle F(s)=P\Phi (s)} is a positive-definite function on G {\displaystyle G} with values in L ( H ) {\displaystyle L(H')} . This can be shown readily:

s , t G F ( s 1 t ) h ( t ) , h ( s ) = s , t G P Φ ( s 1 t ) h ( t ) , h ( s ) = s , t G Φ ( t ) h ( t ) , Φ ( s ) h ( s ) = t G Φ ( t ) h ( t ) , s G Φ ( s ) h ( s ) 0 {\displaystyle {\begin{aligned}\sum _{s,t\in G}\langle F(s^{-1}t)h(t),h(s)\rangle &=\sum _{s,t\in G}\langle P\Phi (s^{-1}t)h(t),h(s)\rangle \\{}&=\sum _{s,t\in G}\langle \Phi (t)h(t),\Phi (s)h(s)\rangle \\{}&=\left\langle \sum _{t\in G}\Phi (t)h(t),\sum _{s\in G}\Phi (s)h(s)\right\rangle \\{}&\geq 0\end{aligned}}}

for every h : G H {\displaystyle h:G\to H'} with finite support. If G {\displaystyle G} has a topology and Φ {\displaystyle \Phi } is weakly(resp. strongly) continuous, then clearly so is F {\displaystyle F} .

On the other hand, consider now a positive-definite function F {\displaystyle F} on G {\displaystyle G} . A unitary representation of G {\displaystyle G} can be obtained as follows. Let C 00 ( G , H ) {\displaystyle C_{00}(G,H)} be the family of functions h : G H {\displaystyle h:G\to H} with finite support. The corresponding positive kernel K ( s , t ) = F ( s 1 t ) {\displaystyle K(s,t)=F(s^{-1}t)} defines a (possibly degenerate) inner product on C 00 ( G , H ) {\displaystyle C_{00}(G,H)} . Let the resulting Hilbert space be denoted by V {\displaystyle V} .

We notice that the "matrix elements" K ( s , t ) = K ( a 1 s , a 1 t ) {\displaystyle K(s,t)=K(a^{-1}s,a^{-1}t)} for all a , s , t {\displaystyle a,s,t} in G {\displaystyle G} . So U a h ( s ) = h ( a 1 s ) {\displaystyle U_{a}h(s)=h(a^{-1}s)} preserves the inner product on V {\displaystyle V} , i.e. it is unitary in L ( V ) {\displaystyle L(V)} . It is clear that the map Φ ( a ) = U a {\displaystyle \Phi (a)=U_{a}} is a representation of G {\displaystyle G} on V {\displaystyle V} .

The unitary representation is unique, up to Hilbert space isomorphism, provided the following minimality condition holds:

V = s G Φ ( s ) H {\displaystyle V=\bigvee _{s\in G}\Phi (s)H}

where {\displaystyle \bigvee } denotes the closure of the linear span.

Identify H {\displaystyle H} as elements (possibly equivalence classes) in V {\displaystyle V} , whose support consists of the identity element e G {\displaystyle e\in G} , and let P {\displaystyle P} be the projection onto this subspace. Then we have P U a P = F ( a ) {\displaystyle PU_{a}P=F(a)} for all a G {\displaystyle a\in G} .

Toeplitz kernels

Let G {\displaystyle G} be the additive group of integers Z {\displaystyle \mathbb {Z} } . The kernel K ( n , m ) = F ( m n ) {\displaystyle K(n,m)=F(m-n)} is called a kernel of Toeplitz type, by analogy with Toeplitz matrices. If F {\displaystyle F} is of the form F ( n ) = T n {\displaystyle F(n)=T^{n}} where T {\displaystyle T} is a bounded operator acting on some Hilbert space. One can show that the kernel K ( n , m ) {\displaystyle K(n,m)} is positive if and only if T {\displaystyle T} is a contraction. By the discussion from the previous section, we have a unitary representation of Z {\displaystyle \mathbb {Z} } , Φ ( n ) = U n {\displaystyle \Phi (n)=U^{n}} for a unitary operator U {\displaystyle U} . Moreover, the property P U a P = F ( a ) {\displaystyle PU_{a}P=F(a)} now translates to P U n P = T n {\displaystyle PU^{n}P=T^{n}} . This is precisely Sz.-Nagy's dilation theorem and hints at an important dilation-theoretic characterization of positivity that leads to a parametrization of arbitrary positive-definite kernels.

References

  • Berg, Christian; Christensen, Paul; Ressel (1984). Harmonic Analysis on Semigroups. Graduate Texts in Mathematics. Vol. 100. Springer Verlag.
  • Constantinescu, T. (1996). Schur Parameters, Dilation and Factorization Problems. Birkhauser Verlag.
  • Sz.-Nagy, B.; Foias, C. (1970). Harmonic Analysis of Operators on Hilbert Space. North-Holland.
  • Sasvári, Z. (1994). Positive Definite and Definitizable Functions. Akademie Verlag.
  • Wells, J. H.; Williams, L. R. (1975). Embeddings and extensions in analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 84. New York-Heidelberg: Springer-Verlag. pp. vii+108.
Categories: