Misplaced Pages

Prion

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from PrpSc) Pathogenic type of misfolded protein For the bird, see Prion (bird). For the theoretical subatomic particle, see Preon. Not to be confused with Major prion protein.

Medical condition
Prion
3D structure of major prion protein
Pronunciation
SpecialtyInfectious diseases

A prion /ˈpriːɒn/ is a misfolded protein that induces misfolding in normal variants of the same protein, leading to cellular death. Prions are responsible for prion diseases, known as transmissible spongiform encephalopathy (TSEs), which are fatal and transmissible neurodegenerative diseases affecting both humans and animals. These proteins can misfold sporadically, due to genetic mutations, or by exposure to an already misfolded protein, leading to an abnormal three-dimensional structure that can propagate misfolding in other proteins.

The term prion comes from "proteinaceous infectious particle". Unlike other infectious agents such as viruses, bacteria, and fungi, prions do not contain nucleic acids (DNA or RNA). Prions are mainly twisted isoforms of the major prion protein (PrP), a naturally occurring protein with an uncertain function. They are the hypothesized cause of various TSEs, including scrapie in sheep, chronic wasting disease (CWD) in deer, bovine spongiform encephalopathy (BSE) in cattle (mad cow disease), and Creutzfeldt–Jakob disease (CJD) in humans.

All known prion diseases in mammals affect the structure of the brain or other neural tissues. These diseases are progressive, have no known effective treatment, and are invariably fatal. Most prion diseases were thought to be caused by PrP until 2015 when a prion form of alpha-synuclein was linked to multiple system atrophy (MSA). Prions are also linked to other neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS), which are sometimes referred to as prion-like diseases.

Prions are a type of intrinsically disordered protein that continuously changes conformation unless bound to a specific partner, such as another protein. Once a prion binds to another in the same conformation, it stabilizes and can form a fibril, leading to abnormal protein aggregates called amyloids. These amyloids accumulate in infected tissue, causing damage and cell death. The structural stability of prions makes them resistant to denaturation by chemical or physical agents, complicating disposal and containment, and raising concerns about iatrogenic spread through medical instruments.

Etymology and pronunciation

The word prion, coined in 1982 by Stanley B. Prusiner, is derived from protein and infection, hence prion, and is short for "proteinaceous infectious particle", in reference to its ability to self-propagate and transmit its conformation to other proteins. Its main pronunciation is /ˈpriːɒn/ , although /ˈpraɪɒn/, as the homographic name of the bird (prions or whalebirds) is pronounced, is also heard. In his 1982 paper introducing the term, Prusiner specified that it is "pronounced pree-on".

Prion protein

See also: Major prion protein

Structure

Further information: Major prion protein § Structure

Prions consist of a misfolded form of major prion protein (PrP), a protein that is a natural part of the bodies of humans and other animals. The PrP found in infectious prions has a different structure and is resistant to proteases, the enzymes in the body that can normally break down proteins. The normal form of the protein is called PrP, while the infectious form is called PrP – the C refers to 'cellular' PrP, while the Sc refers to 'scrapie', the prototypic prion disease, occurring in sheep. PrP can also be induced to fold into other more-or-less well-defined isoforms in vitro; although their relationships to the form(s) that are pathogenic in vivo is often unclear, high-resolution structural analyses have begun to reveal structural features that correlate with prion infectivity.

PrP

PrP is a normal protein found on the membranes of cells, "including several blood components of which platelets constitute the largest reservoir in humans." It has 209 amino acids (in humans), one disulfide bond, a molecular mass of 35–36 kDa and a mainly alpha-helical structure. Several topological forms exist; one cell surface form anchored via glycolipid and two transmembrane forms. The normal protein is not sedimentable; meaning that it cannot be separated by centrifuging techniques. It has a complex function, which continues to be investigated. PrP binds copper(II) ions (those in a +2 oxidation state) with high affinity. This property is supposed to play a role in PrP’s anti-oxidative properties via reversible oxidation of the N-terminal’s methionine residues into sulfoxide. Moreover, studies have suggested that, in vivo, due to PrP’s low selectivity to metallic substrates, the protein’s anti oxidative function is impaired when in contact with metals other than copper. PrP is readily digested by proteinase K and can be liberated from the cell surface by the enzyme phosphoinositide phospholipase C (PI-PLC), which cleaves the glycophosphatidylinositol (GPI) glycolipid anchor. PrP plays an important role in cell-cell adhesion and intracellular signaling in vivo, and may therefore be involved in cell-cell communication in the brain.

PrP

Photomicrograph of mouse neurons showing red stained inclusions identified as scrapies prion protein.
PrP (stained in red) revealed in a photomicrograph of scrapie-infected mouse neuronal cells.

The infectious isoform of PrP, known as PrP, or simply the prion, is able to convert normal PrP proteins into the infectious isoform by changing their conformation, or shape; this, in turn, alters the way the proteins interconnect. PrP always causes prion disease. PrP has a higher proportion of β-sheet structure in place of the normal α-helix structure. Several highly infectious, brain-derived PrP structures have been discovered by cryo-electron microscopy. Another brain-derived fibril structure isolated from humans with Gerstmann-Straussler-Schienker syndrome has also been determined. All of the structures described in high resolution so far are amyloid fibers in which individual PrP molecules are stacked via intermolecular beta sheets. However, 2-D crystalline arrays have also been reported at lower resolution in ex vivo preparations of prions. In the prion amyloids, the glycolipid anchors and asparagine-linked glycans, when present, project outward from the lateral surfaces of the fiber cores. Often PrP is bound to cellular membranes, presumably via its array of glycolipid anchors, however, sometimes the fibers are dissociated from membranes and accumulate outside of cells in the form of plaques. The end of each fiber acts as a template onto which free protein molecules may attach, allowing the fiber to grow. This growth process requires complete refolding of PrP. Different prion strains have distinct templates, or conformations, even when composed of PrP molecules of the same amino acid sequence, as occurs in a particular host genotype. Under most circumstances, only PrP molecules with an identical amino acid sequence to the infectious PrP are incorporated into the growing fiber. However, cross-species transmission also happens rarely.

PrP

Protease-resistant PrP-like protein (PrP) is the name given to any isoform of PrP which is structurally altered and converted into a misfolded proteinase K-resistant form. To model conversion of PrP to PrP in vitro, Kocisko et al. showed that PrP could cause PrP to convert to PrP under cell-free conditions and Soto et al. demonstrated sustained amplification of PrP and prion infectivity by a procedure involving cyclic amplification of protein misfolding. The term "PrP" may refer either to protease-resistant forms of PrP, which is isolated from infectious tissue and associated with the transmissible spongiform encephalopathy agent, or to other protease-resistant forms of PrP that, for example, might be generated in vitro. Accordingly, unlike PrP, PrP may not necessarily be infectious.

Models of normal (PrP) and infectious (PrP) forms of prion protein on a membrane: polypeptide (turquoise); glycans (red); glycolipid anchors (blue). The core structures are based on NMR spectroscopy (PrP) and cryo-electron microscopy (PrP).

Normal function of PrP

The physiological function of the prion protein remains poorly understood. While data from in vitro experiments suggest many dissimilar roles, studies on PrP knockout mice have provided only limited information because these animals exhibit only minor abnormalities. In research done in mice, it was found that the cleavage of PrP in peripheral nerves causes the activation of myelin repair in Schwann cells and that the lack of PrP proteins caused demyelination in those cells.

PrP and regulated cell death

MAVS, RIP1, and RIP3 are prion-like proteins found in other parts of the body. They also polymerise into filamentous amyloid fibers which initiate regulated cell death in the case of a viral infection to prevent the spread of virions to other, surrounding cells.

PrP and long-term memory

A review of evidence in 2005 suggested that PrP may have a normal function in the maintenance of long-term memory. As well, a 2004 study found that mice lacking genes for normal cellular PrP protein show altered hippocampal long-term potentiation. A recent study that also suggests why this might be the case, found that neuronal protein CPEB has a similar genetic sequence to yeast prion proteins. The prion-like formation of CPEB is essential for maintaining long-term synaptic changes associated with long-term memory formation.

PrP and stem cell renewal

A 2006 article from the Whitehead Institute for Biomedical Research indicates that PrP expression on stem cells is necessary for an organism's self-renewal of bone marrow. The study showed that all long-term hematopoietic stem cells express PrP on their cell membrane and that hematopoietic tissues with PrP-null stem cells exhibit increased sensitivity to cell depletion.

PrP and innate immunity

There is some evidence that PrP may play a role in innate immunity, as the expression of PRNP, the PrP gene, is upregulated in many viral infections and PrP has antiviral properties against many viruses, including HIV.

Replication

Heterodimer model of prion propagation
Fibril model of prion propagation.

The first hypothesis that tried to explain how prions replicate in a protein-only manner was the heterodimer model. This model assumed that a single PrP molecule binds to a single PrP molecule and catalyzes its conversion into PrP. The two PrP molecules then come apart and can go on to convert more PrP. However, a model of prion replication must explain both how prions propagate, and why their spontaneous appearance is so rare. Manfred Eigen showed that the heterodimer model requires PrP to be an extraordinarily effective catalyst, increasing the rate of the conversion reaction by a factor of around 10. This problem does not arise if PrP exists only in aggregated forms such as amyloid, where cooperativity may act as a barrier to spontaneous conversion. What is more, despite considerable effort, infectious monomeric PrP has never been isolated.

An alternative model assumes that PrP exists only as fibrils, and that fibril ends bind PrP and convert it into PrP. If this were all, then the quantity of prions would increase linearly, forming ever longer fibrils. But exponential growth of both PrP and of the quantity of infectious particles is observed during prion disease. This can be explained by taking into account fibril breakage. A mathematical solution for the exponential growth rate resulting from the combination of fibril growth and fibril breakage has been found. The exponential growth rate depends largely on the square root of the PrP concentration. The incubation period is determined by the exponential growth rate, and in vivo data on prion diseases in transgenic mice match this prediction. The same square root dependence is also seen in vitro in experiments with a variety of different amyloid proteins.

The mechanism of prion replication has implications for designing drugs. Since the incubation period of prion diseases is so long, an effective drug does not need to eliminate all prions, but simply needs to slow down the rate of exponential growth. Models predict that the most effective way to achieve this, using a drug with the lowest possible dose, is to find a drug that binds to fibril ends and blocks them from growing any further.

Researchers at Dartmouth College discovered that endogenous host cofactor molecules such as the phospholipid molecule (e.g. phosphatidylethanolamine) and polyanions (e.g. single stranded RNA molecules) are necessary to form PrP molecules with high levels of specific infectivity in vitro, whereas protein-only PrP molecules appear to lack significant levels of biological infectivity.

Transmissible spongiform encephalopathies

Main article: Transmissible spongiform encephalopathy
Diseases caused by prions
Affected animal(s) Disease
Sheep, Goat Scrapie
Cattle Bovine spongiform encephalopathy
Camel Camel spongiform encephalopathy (CSE)
Mink Transmissible mink encephalopathy (TME)
White-tailed deer, elk, mule deer, moose Chronic wasting disease (CWD)
Cat Feline spongiform encephalopathy (FSE)
Nyala, Oryx, Greater Kudu Exotic ungulate encephalopathy (EUE)
Ostrich Spongiform encephalopathy
(unknown if transmissible)
Human Creutzfeldt–Jakob disease (CJD)
Iatrogenic Creutzfeldt–Jakob disease (iCJD)
Variant Creutzfeldt–Jakob disease (vCJD)
Familial Creutzfeldt–Jakob disease (fCJD)
Sporadic Creutzfeldt–Jakob disease (sCJD)
Gerstmann–Sträussler–Scheinker syndrome (GSS)
Fatal insomnia (FFI)
Kuru
Familial spongiform encephalopathy
Variably protease-sensitive prionopathy (VPSPr)

Prions cause neurodegenerative disease by aggregating extracellularly within the central nervous system to form plaques known as amyloids, which disrupt the normal tissue structure. This disruption is characterized by "holes" in the tissue with resultant spongy architecture due to the vacuole formation in the neurons. Other histological changes include astrogliosis and the absence of an inflammatory reaction. While the incubation period for prion diseases is relatively long (5 to 20 years), once symptoms appear the disease progresses rapidly, leading to brain damage and death. Neurodegenerative symptoms can include convulsions, dementia, ataxia (balance and coordination dysfunction), and behavioural or personality changes.

Many different mammalian species can be affected by prion diseases, as the prion protein (PrP) is very similar in all mammals. Due to small differences in PrP between different species it is unusual for a prion disease to transmit from one species to another. The human prion disease variant Creutzfeldt–Jakob disease, however, is thought to be caused by a prion that typically infects cattle, causing bovine spongiform encephalopathy and is transmitted through infected meat.

All known prion diseases are untreatable and fatal.

Until 2015 all known mammalian prion diseases were considered to be caused by the prion protein, PrP; in 2015 multiple system atrophy was found to be transmissible and was hypothesized to be caused by a new prion, the misfolded form of a protein called alpha-synuclein. The endogenous, properly folded form of the prion protein is denoted PrP (for Common or Cellular), whereas the disease-linked, misfolded form is denoted PrP (for Scrapie), after one of the diseases first linked to prions and neurodegeneration. The precise structure of the prion is not known, though they can be formed spontaneously by combining PrP, homopolymeric polyadenylic acid, and lipids in a protein misfolding cyclic amplification (PMCA) reaction even in the absence of pre-existing infectious prions. This result is further evidence that prion replication does not require genetic information.

Transmission

It has been recognized that prion diseases can arise in three different ways: acquired, familial, or sporadic. It is often assumed that the diseased form directly interacts with the normal form to make it rearrange its structure. One idea, the "Protein X" hypothesis, is that an as-yet unidentified cellular protein (Protein X) enables the conversion of PrP to PrP by bringing a molecule of each of the two together into a complex.

The primary method of infection in animals is through ingestion. It is thought that prions may be deposited in the environment through the remains of dead animals and via urine, saliva, and other body fluids. They may then linger in the soil by binding to clay and other minerals.

A University of California research team has provided evidence for the theory that infection can occur from prions in manure. And, since manure is present in many areas surrounding water reservoirs, as well as used on many crop fields, it raises the possibility of widespread transmission. Although it was initially reported in January 2011 that researchers had discovered prions spreading through airborne transmission on aerosol particles in an animal testing experiment focusing on scrapie infection in laboratory mice, this report was retracted in 2024. Preliminary evidence supporting the notion that prions can be transmitted through use of urine-derived human menopausal gonadotropin, administered for the treatment of infertility, was published in 2011.

Genetic Susceptibility

The majority of human prion diseases are classified as sporadic Creutzfeldt–Jakob disease (sCJD). Genetic research has identified an association between susceptibility to sCJD and a polymorphism at codon 129 in the PRNP gene, which encodes the prion protein (PrP). A homozygous methionine/methionine (MM) genotype at this position has been shown to significantly increase the risk of developing sCJD when compared to a heterozygous methionine/valine (MV) genotype. Analysis of multiple studies has shown that individuals with the MM genotype are approximately five times more likely to develop sCJD than those with the MV genotype.

Prions in plants

In 2015, researchers at The University of Texas Health Science Center at Houston found that plants can be a vector for prions. When researchers fed hamsters grass that grew on ground where a deer that died with chronic wasting disease (CWD) was buried, the hamsters became ill with CWD, suggesting that prions can bind to plants, which then take them up into the leaf and stem structure, where they can be eaten by herbivores, thus completing the cycle. It is thus possible that there is a progressively accumulating number of prions in the environment.

Sterilization

Infectious particles possessing nucleic acid are dependent upon it to direct their continued replication. Prions, however, are infectious by their effect on normal versions of the protein. Sterilizing prions, therefore, requires the denaturation of the protein to a state in which the molecule is no longer able to induce the abnormal folding of normal proteins. In general, prions are quite resistant to proteases, heat, ionizing radiation, and formaldehyde treatments, although their infectivity can be reduced by such treatments. Effective prion decontamination relies upon protein hydrolysis or reduction or destruction of protein tertiary structure. Examples include sodium hypochlorite, sodium hydroxide, and strongly acidic detergents such as LpH.

The World Health Organization recommends any of the following three procedures for the sterilization of all heat-resistant surgical instruments to ensure that they are not contaminated with prions:

  1. Immerse in 1N sodium hydroxide and place in a gravity-displacement autoclave at 121 °C for 30 minutes; clean; rinse in water; and then perform routine sterilization processes.
  2. Immerse in 1N sodium hypochlorite (20,000 parts per million available chlorine) for 1 hour; transfer instruments to water; heat in a gravity-displacement autoclave at 121 °C for 1 hour; clean; and then perform routine sterilization processes.
  3. Immerse in 1N sodium hydroxide or sodium hypochlorite (20,000 parts per million available chlorine) for 1 hour; remove and rinse in water, then transfer to an open pan and heat in a gravity-displacement (121 °C) or in a porous-load (134 °C) autoclave for 1 hour; clean; and then perform routine sterilization processes.

134 °C (273 °F) for 18 minutes in a pressurized steam autoclave has been found to be somewhat effective in deactivating the agent of disease. Ozone sterilization has been studied as a potential method for prion denaturation and deactivation. Other approaches being developed include thiourea-urea treatment, guanidinium chloride treatment, and special heat-resistant subtilisin combined with heat and detergent. A method sufficient for sterilizing prions on one material may fail on another.

Renaturation of a completely denatured prion to infectious status has not yet been achieved; however, partially denatured prions can be renatured to an infective status under certain artificial conditions.

Degradation resistance in nature

Overwhelming evidence shows that prions resist degradation and persist in the environment for years, and proteases do not degrade them. Experimental evidence shows that unbound prions degrade over time, while soil-bound prions remain at stable or increasing levels, suggesting that prions likely accumulate in the environment. One 2015 study by US scientists found that repeated drying and wetting may render soil bound prions less infectious, although this was dependent on the soil type they were bound to.

Degradation by living beings

More recent studies suggest scrapie prions can be degraded by diverse cellular machinery. Inhibition of autophagy accelerates prion accumulation whereas encouragement of autophagy promotes prion clearance. The ubiquitin proteasome system appears to be able to degrade small enough aggregates. In addition, keratinase from B. licheniformis, alkaline serine protease from Streptomyces sp, subtilisin-like pernisine from Aeropyrum pernix, alkaline protease from Nocardiopsis sp, nattokinase from B. subtilis, engineered subtilisins from B. lentus and serine protease from three lichen species have been found to degrade PrP.

Fungi

Main article: Fungal prion

Proteins showing prion-type behavior are also found in some fungi, which has been useful in helping to understand mammalian prions. Fungal prions do not always cause disease in their hosts. In yeast, protein refolding to the prion configuration is assisted by chaperone proteins such as Hsp104. All known prions induce the formation of an amyloid fold, in which the protein polymerises into an aggregate consisting of tightly packed beta sheets. Amyloid aggregates are fibrils, growing at their ends, and replicate when breakage causes two growing ends to become four growing ends. The incubation period of prion diseases is determined by the exponential growth rate associated with prion replication, which is a balance between the linear growth and the breakage of aggregates.

Fungal proteins exhibiting templated conformational change were discovered in the yeast Saccharomyces cerevisiae by Reed Wickner in the early 1990s. For their mechanistic similarity to mammalian prions, they were termed yeast prions. Subsequent to this, a prion has also been found in the fungus Podospora anserina. These prions behave similarly to PrP, but, in general, are nontoxic to their hosts. Susan Lindquist's group at the Whitehead Institute has argued some of the fungal prions are not associated with any disease state, but may have a useful role; however, researchers at the NIH have also provided arguments suggesting that fungal prions could be considered a diseased state. There is evidence that fungal proteins have evolved specific functions that are beneficial to the microorganism that enhance their ability to adapt to their diverse environments. Further, within yeasts, prions can act as vectors of epigenetic inheritance, transferring traits to offspring without any genomic change.

Research into fungal prions has given strong support to the protein-only concept, since purified protein extracted from cells with a prion state has been demonstrated to convert the normal form of the protein into a misfolded form in vitro, and in the process, preserve the information corresponding to different strains of the prion state. It has also shed some light on prion domains, which are regions in a protein that promote the conversion into a prion. Fungal prions have helped to suggest mechanisms of conversion that may apply to all prions, though fungal prions appear distinct from infectious mammalian prions in the lack of cofactor required for propagation. The characteristic prion domains may vary between species – e.g., characteristic fungal prion domains are not found in mammalian prions.

Fungal prions
Protein Natural host Normal function Prion state Prion phenotype Year identified
Ure2p Saccharomyces cerevisiae Nitrogen catabolite repressor Growth on poor nitrogen sources 1994
Sup35p S. cerevisiae Translation termination factor Increased levels of nonsense suppression 1994
HET-S Podospora anserina Regulates heterokaryon incompatibility Heterokaryon formation between incompatible strains
Rnq1p S. cerevisiae Protein template factor , Promotes aggregation of other prions
Swi1 S. cerevisiae Chromatin remodeling Poor growth on some carbon sources 2008
Cyc8 S. cerevisiae Transcriptional repressor Transcriptional derepression of multiple genes 2009
Mot3 S. cerevisiae Nuclear transcription factor Transcriptional derepression of anaerobic genes 2009
Sfp1 S. cerevisiae Putative transcription factor Antisuppression 2010

Treatments

There are no effective treatments for prion diseases. Clinical trials in humans have not met with success and have been hampered by the rarity of prion diseases. Although some potential treatments have shown promise in the laboratory, none have been effective once the disease has commenced.

In other diseases

Prion-like domains have been found in a variety of other mammalian proteins. Some of these proteins have been implicated in the ontogeny of age-related neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer's disease, Parkinson's disease, and Huntington's disease. They are also implicated in some forms of systemic amyloidosis including AA amyloidosis that develops in humans and animals with inflammatory and infectious diseases such as tuberculosis, Crohn's disease, rheumatoid arthritis, and HIV/AIDS. AA amyloidosis, like prion disease, may be transmissible. This has given rise to the 'prion paradigm', where otherwise harmless proteins can be converted to a pathogenic form by a small number of misfolded, nucleating proteins.

The definition of a prion-like domain arises from the study of fungal prions. In yeast, prionogenic proteins have a portable prion domain that is both necessary and sufficient for self-templating and protein aggregation. This has been shown by attaching the prion domain to a reporter protein, which then aggregates like a known prion. Similarly, removing the prion domain from a fungal prion protein inhibits prionogenesis. This modular view of prion behaviour has led to the hypothesis that similar prion domains are present in animal proteins, in addition to PrP. These fungal prion domains have several characteristic sequence features. They are typically enriched in asparagine, glutamine, tyrosine and glycine residues, with an asparagine bias being particularly conducive to the aggregative property of prions. Historically, prionogenesis has been seen as independent of sequence and only dependent on relative residue content. However, this has been shown to be false, with the spacing of prolines and charged residues having been shown to be critical in amyloid formation.

Bioinformatic screens have predicted that over 250 human proteins contain prion-like domains (PrLD). These domains are hypothesized to have the same transmissible, amyloidogenic properties of PrP and known fungal proteins. As in yeast, proteins involved in gene expression and RNA binding seem to be particularly enriched in PrLD's, compared to other classes of protein. In particular, 29 of the known 210 proteins with an RNA recognition motif also have a putative prion domain. Meanwhile, several of these RNA-binding proteins have been independently identified as pathogenic in cases of ALS, FTLD-U, Alzheimer's disease, and Huntington's disease.

Role in neurodegenerative disease

The pathogenicity of prions and proteins with prion-like domains is hypothesized to arise from their self-templating ability and the resulting exponential growth of amyloid fibrils. The presence of amyloid fibrils in patients with degenerative diseases has been well documented. These amyloid fibrils are seen as the result of pathogenic proteins that self-propagate and form highly stable, non-functional aggregates. While this does not necessarily imply a causal relationship between amyloid and degenerative diseases, the toxicity of certain amyloid forms and the overproduction of amyloid in familial cases of degenerative disorders supports the idea that amyloid formation is generally toxic.

Specifically, aggregation of TDP-43, an RNA-binding protein, has been found in ALS/MND patients, and mutations in the genes coding for these proteins have been identified in familial cases of ALS/MND. These mutations promote the misfolding of the proteins into a prion-like conformation. The misfolded form of TDP-43 forms cytoplasmic inclusions in affected neurons, and is found depleted in the nucleus. In addition to ALS/MND and FTLD-U, TDP-43 pathology is a feature of many cases of Alzheimer's disease, Parkinson's disease and Huntington's disease. The misfolding of TDP-43 is largely directed by its prion-like domain. This domain is inherently prone to misfolding, while pathological mutations in TDP-43 have been found to increase this propensity to misfold, explaining the presence of these mutations in familial cases of ALS/MND. As in yeast, the prion-like domain of TDP-43 has been shown to be both necessary and sufficient for protein misfolding and aggregation.

Similarly, pathogenic mutations have been identified in the prion-like domains of heterogeneous nuclear riboproteins hnRNPA2B1 and hnRNPA1 in familial cases of muscle, brain, bone and motor neuron degeneration. The wild-type form of all of these proteins show a tendency to self-assemble into amyloid fibrils, while the pathogenic mutations exacerbate this behaviour and lead to excess accumulation.

Weaponization

Prions could theoretically be employed as a weaponized agent. With potential fatality rates of 100%, prions could be an effective bioweapon, sometimes called a "biochemical weapon", because a prion is a biochemical. An unfavorable aspect is prions' very long incubation periods. Persistent heavy exposure of prions to the intestine might shorten the overall onset. Another aspect of using prions in warfare is the difficulty of detection and decontamination.

History

In the 18th and 19th centuries, exportation of sheep from Spain was observed to coincide with a disease called scrapie. This disease caused the affected animals to "lie down, bite at their feet and legs, rub their backs against posts, fail to thrive, stop feeding and finally become lame". The disease was also observed to have the long incubation period that is a key characteristic of transmissible spongiform encephalopathies (TSEs). Although the cause of scrapie was not known back then, it is probably the first transmissible spongiform encephalopathy to be recorded.

In the 1950s, Carleton Gajdusek began research which eventually showed that kuru could be transmitted to chimpanzees by what was possibly a new infectious agent, work for which he eventually won the 1976 Nobel prize. During the 1960s, two London-based researchers, radiation biologist Tikvah Alper and biophysicist John Stanley Griffith, developed the hypothesis that the transmissible spongiform encephalopathies are caused by an infectious agent consisting solely of proteins. Earlier investigations by E.J. Field into scrapie and kuru had found evidence for the transfer of pathologically inert polysaccharides that only become infectious post-transfer, in the new host. Alper and Griffith wanted to account for the discovery that the mysterious infectious agent causing the diseases scrapie and Creutzfeldt–Jakob disease resisted ionizing radiation. Griffith proposed three ways in which a protein could be a pathogen.

In the first hypothesis, he suggested that if the protein is the product of a normally suppressed gene, and introducing the protein could induce the gene's expression, that is, wake the dormant gene up, then the result would be a process indistinguishable from replication, as the gene's expression would produce the protein, which would then wake the gene in other cells.

His second hypothesis forms the basis of the modern prion theory, and proposed that an abnormal form of a cellular protein can convert normal proteins of the same type into its abnormal form, thus leading to replication.

His third hypothesis proposed that the agent could be an antibody if the antibody was its own target antigen, as such an antibody would result in more and more antibody being produced against itself. However, Griffith acknowledged that this third hypothesis was unlikely to be true due to the lack of a detectable immune response.

Francis Crick recognized the potential significance of the Griffith protein-only hypothesis for scrapie propagation in the second edition of his "Central dogma of molecular biology" (1970): While asserting that the flow of sequence information from protein to protein, or from protein to RNA and DNA was "precluded", he noted that Griffith's hypothesis was a potential contradiction (although it was not so promoted by Griffith). The revised hypothesis was later formulated, in part, to accommodate reverse transcription (which both Howard Temin and David Baltimore discovered in 1970).

In 1982, Stanley B. Prusiner of the University of California, San Francisco, announced that his team had purified the hypothetical infectious protein, which did not appear to be present in healthy hosts, though they did not manage to isolate the protein until two years after Prusiner's announcement. The protein was named a prion, for "proteinacious infectious particle", derived from the words protein and infection. When the prion was discovered, Griffith's first hypothesis, that the protein was the product of a normally silent gene was favored by many. It was subsequently discovered, however, that the same protein exists in normal hosts but in different form.

Following the discovery of the same protein in different form in uninfected individuals, the specific protein that the prion was composed of was named the prion protein (PrP), and Griffith's second hypothesis that an abnormal form of a host protein can convert other proteins of the same type into its abnormal form, became the dominant theory. Prusiner was awarded the Nobel Prize in Physiology or Medicine in 1997 for his research into prions.

See also

References

  1. "English pronunciation of prion". Cambridge Dictionary. Cambridge University Press. Archived from the original on April 24, 2017. Retrieved March 30, 2020.
  2. "Definition of Prion". Dictionary.com. Random House, Inc. 2021. Definition 2 of 2. Archived from the original on September 12, 2021. Retrieved September 12, 2021.
  3. "Transmissible Spongiform Encephalopathies". National Institute of Neurological Disorders and Stroke. Retrieved April 23, 2023.
  4. "Prion diseases". Diseases and conditions. National Institute of Health. Archived from the original on May 22, 2020. Retrieved June 20, 2018.
  5. Kumar V (2021). Robbins & Cotran Pathologic Basis of Disease (10th ed.).
  6. "What Is a Prion?". Scientific American. Archived from the original on May 16, 2018. Retrieved May 15, 2018.
  7. "Prion infectious agent". Encyclopaedia Britannica. Archived from the original on May 16, 2018. Retrieved May 15, 2018.
  8. Prusiner SB (June 1991). "Molecular biology of prion diseases". Science. 252 (5012): 1515–22. Bibcode:1991Sci...252.1515P. doi:10.1126/science.1675487. PMID 1675487. S2CID 22417182.
  9. ^ Prusiner SB (November 1998). "Prions". Proceedings of the National Academy of Sciences of the United States of America. 95 (23): 13363–83. Bibcode:1998PNAS...9513363P. doi:10.1073/pnas.95.23.13363. PMC 33918. PMID 9811807.
  10. ^ Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB, et al. (September 2015). "Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism". Proceedings of the National Academy of Sciences of the United States of America. 112 (38): E5308–17. Bibcode:2015PNAS..112E5308P. doi:10.1073/pnas.1514475112. PMC 4586853. PMID 26324905.
    Lay summary: Makin S (September 1, 2015). "A Red Flag for a Neurodegenerative Disease That May Be Transmissible". Scientific American.
  11. ^ Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (February 2009). "Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers". Nature. 457 (7233): 1128–32. Bibcode:2009Natur.457.1128L. doi:10.1038/nature07761. PMC 2748841. PMID 19242475.
  12. ^ Olanow CW, Brundin P (January 2013). "Parkinson's disease and alpha synuclein: is Parkinson's disease a prion-like disorder?". Movement Disorders. 28 (1): 31–40. doi:10.1002/mds.25373. PMID 23390095. S2CID 38287298.
  13. Dobson CM (February 2001). "The structural basis of protein folding and its links with human disease". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 356 (1406): 133–145. doi:10.1098/rstb.2000.0758. PMC 1088418. PMID 11260793.
  14. ^ Prusiner SB (April 1982). "Novel proteinaceous infectious particles cause scrapie" (PDF). Science. 216 (4542): 136–144. Bibcode:1982Sci...216..136P. doi:10.1126/science.6801762. PMID 6801762. S2CID 7447120. Archived from the original (PDF) on July 20, 2020.
  15. "Stanley B. Prusiner – Autobiography". NobelPrize.org. Archived from the original on June 16, 2013. Retrieved January 2, 2007.
  16. Schonberger LB, Schonberger RB (June 2012). "Etymologia: prion". Emerging Infectious Diseases. 18 (6): 1030–1. doi:10.3201/eid1806.120271. PMC 3381685. PMID 22607731.
  17. "Dorland's Illustrated Medical Dictionary". Elsevier. Archived from the original on January 11, 2014. Retrieved July 22, 2016.
  18. ^ "Merriam-Webster's Unabridged Dictionary". Merriam-Webster. Archived from the original on May 25, 2020. Retrieved July 22, 2016.
  19. "The American Heritage Dictionary of the English Language". Houghton Mifflin Harcourt. Archived from the original on September 25, 2015. Retrieved July 22, 2016.
  20. Priola SA, Chesebro B, Caughey B (May 2003). "Biomedicine. A view from the top--prion diseases from 10,000 feet". Science. 300 (5621): 917–9. doi:10.1126/science.1085920. PMID 12738843. S2CID 38459669. Archived from the original on July 28, 2020. Retrieved July 28, 2020.
  21. Artikis E, Kraus A, Caughey B (August 2022). "Structural biology of ex vivo mammalian prions". The Journal of Biological Chemistry. 298 (8): 102181. doi:10.1016/j.jbc.2022.102181. PMC 9293645. PMID 35752366.
  22. Robertson C, Booth SA, Beniac DR, Coulthart MB, Booth TF, McNicol A (May 2006). "Cellular prion protein is released on exosomes from activated platelets". Blood. 107 (10): 3907–11. doi:10.1182/blood-2005-02-0802. PMID 16434486. S2CID 34141310.
  23. Riek R, Hornemann S, Wider G, Glockshuber R, Wüthrich K (August 1997). "NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231)" (PDF). FEBS Letters. 413 (2): 282–8. Bibcode:1997FEBSL.413..282R. doi:10.1016/S0014-5793(97)00920-4. PMID 9280298. S2CID 39791520.
  24. Donne DG, Viles JH, Groth D, Mehlhorn I, James TL, Cohen FE, et al. (December 1997). "Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible". Proceedings of the National Academy of Sciences of the United States of America. 94 (25): 13452–7. Bibcode:1997PNAS...9413452D. doi:10.1073/pnas.94.25.13452. PMC 28326. PMID 9391046.
  25. Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M, et al. (February 1998). "A transmembrane form of the prion protein in neurodegenerative disease" (PDF). Science. 279 (5352): 827–834. Bibcode:1998Sci...279..827H. doi:10.1126/science.279.5352.827. PMID 9452375. S2CID 20176119. Archived from the original (PDF) on February 23, 2019.
  26. ^ Carp RI, Kascap RJ (2004). "Taking aim at the transmissible spongiform encephalopathie's infectious agents". In Krull IS, Nunnally BK (eds.). Prions and mad cow disease. New York: Marcel Dekker. p. 6. ISBN 978-0-8247-4083-2. Archived from the original on August 20, 2020. Retrieved June 2, 2020.
  27. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, et al. (1997). "The cellular prion protein binds copper in vivo". Nature. 390 (6661): 684–7. Bibcode:1997Natur.390..684B. doi:10.1038/37783. PMID 9414160. S2CID 4388803.
  28. Arcos-López T (March 1, 2016). "Spectroscopic and Theoretical Study of CuI Binding to His111 in the Human Prion Protein Fragment 106–115". Organic Chemistry 2016. 55 (Inorganic Chemistry 2016): 2909–22. doi:10.1021/acs.inorgchem.5b02794. hdl:11336/52826. PMC 4804749. PMID 26930130.
  29. Wong BS (December 2001). "A Yin-Yang role for metals in prion disease". Panminerva Medica (2001). 43 (4): 283–7. PMID 11677424. Retrieved November 12, 2024.
  30. Weissmann C (November 2004). "The state of the prion". Nature Reviews. Microbiology. 2 (11): 861–871. doi:10.1038/nrmicro1025. PMID 15494743. S2CID 20992257.
  31. Málaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, et al. (March 2009). Weissmann C (ed.). "Regulation of embryonic cell adhesion by the prion protein". PLOS Biology. 7 (3): e55. doi:10.1371/journal.pbio.1000055. PMC 2653553. PMID 19278297.
  32. Liebert A, Bicknell B, Adams R (2014). "Prion Protein Signaling in the Nervous System—A Review and Perspective". Signal Transduction Insights. 3: STI.S12319. doi:10.4137/STI.S12319. ISSN 1178-6434.
  33. Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS (August 1991). "Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy". Biochemistry. 30 (31): 7672–80. doi:10.1021/bi00245a003. PMID 1678278.
  34. Safar J, Roller PP, Gajdusek DC, Gibbs CJ (September 1993). "Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein". The Journal of Biological Chemistry. 268 (27): 20276–84. doi:10.1016/s0021-9258(20)80725-x. PMID 8104185.
  35. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, et al. (December 1993). "Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins". Proceedings of the National Academy of Sciences of the United States of America. 90 (23): 10962–6. Bibcode:1993PNAS...9010962P. doi:10.1073/pnas.90.23.10962. PMC 47901. PMID 7902575.
  36. ^ Kraus A, Hoyt F, Schwartz CL, Hansen B, Artikis E, Hughson AG, et al. (November 2021). "High-resolution structure and strain comparison of infectious mammalian prions". Molecular Cell. 81 (21): 4540–51. doi:10.1016/j.molcel.2021.08.011. PMID 34433091.
  37. Hoyt F, Standke HG, Artikis E, Schwartz CL, Hansen B, Li K, et al. (July 2022). "Cryo-EM structure of anchorless RML prion reveals variations in shared motifs between distinct strains". Nature Communications. 13 (1): 4005. Bibcode:2022NatCo..13.4005H. doi:10.1038/s41467-022-30458-6. PMC 9279418. PMID 35831291.
  38. Manka SW, Zhang W, Wenborn A, Betts J, Joiner S, Saibil HR, et al. (July 2022). "2.7 Å cryo-EM structure of ex vivo RML prion fibrils". Nature Communications. 13 (1): 4004. Bibcode:2022NatCo..13.4004M. doi:10.1038/s41467-022-30457-7. PMC 9279362. PMID 35831275.
  39. Hallinan GI, Ozcan KA, Hoq MR, Cracco L, Vago FS, Bharath SR, et al. (September 2022). "Cryo-EM structures of prion protein filaments from Gerstmann-Sträussler-Scheinker disease". Acta Neuropathologica. 144 (3): 509–520. doi:10.1007/s00401-022-02461-0. PMC 9381446. PMID 35819518.
  40. Wille H, Michelitsch MD, Guenebaut V, Supattapone S, Serban A, Cohen FE, et al. (March 2002). "Structural studies of the scrapie prion protein by electron crystallography". Proceedings of the National Academy of Sciences of the United States of America. 99 (6): 3563–8. Bibcode:2002PNAS...99.3563W. doi:10.1073/pnas.052703499. PMC 122563. PMID 11891310.
  41. Bessen RA, Kocisko DA, Raymond GJ, Nandan S, Lansbury PT, Caughey B (June 1995). "Non-genetic propagation of strain-specific properties of scrapie prion protein". Nature. 375 (6533): 698–700. Bibcode:1995Natur.375..698B. doi:10.1038/375698a0. PMID 7791905. S2CID 4355092.
  42. Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R, et al. (December 1996). "Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity". Science. 274 (5295): 2079–82. Bibcode:1996Sci...274.2079T. doi:10.1126/science.274.5295.2079. PMID 8953038.
  43. Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, et al. (October 1998). "Eight prion strains have PrP(Sc) molecules with different conformations". Nature Medicine. 4 (10): 1157–65. doi:10.1038/2654. PMID 9771749. S2CID 6031488.
  44. Hoyt F, Alam P, Artikis E, Schwartz CL, Hughson AG, Race B, et al. (November 2022). "Cryo-EM of prion strains from the same genotype of host identifies conformational determinants". PLOS Pathogens. 18 (11): e1010947. doi:10.1371/journal.ppat.1010947. PMC 9671466. PMID 36342968.
  45. Manka SW, Wenborn A, Betts J, Joiner S, Saibil HR, Collinge J, et al. (May 2023). "A structural basis for prion strain diversity". Nature Chemical Biology. 19 (5): 607–613. doi:10.1038/s41589-022-01229-7. PMC 10154210. PMID 36646960.
  46. Kurt TD, Sigurdson CJ (2016). "Cross-species transmission of CWD prions". Prion. 10 (1): 83–91. doi:10.1080/19336896.2015.1118603. PMC 4981193. PMID 26809254.
  47. Riesner D (June 2003). "Biochemistry and structure of PrP(C) and PrP(Sc)". British Medical Bulletin. 66 (1): 21–33. doi:10.1093/bmb/66.1.21. PMID 14522846.
  48. Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, et al. (August 1994). "Cell-free formation of protease-resistant prion protein". Nature. 370 (6489): 471–4. Bibcode:1994Natur.370..471K. doi:10.1038/370471a0. hdl:1721.1/42578. PMID 7913989. S2CID 4337709.
  49. Saborio GP, Permanne B, Soto C (June 2001). "Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding". Nature. 411 (6839): 810–3. Bibcode:2001Natur.411..810S. doi:10.1038/35081095. PMID 11459061. S2CID 4317585.
  50. Bieschke J, Weber P, Sarafoff N, Beekes M, Giese A, Kretzschmar H (August 2004). "Autocatalytic self-propagation of misfolded prion protein". Proceedings of the National Academy of Sciences of the United States of America. 101 (33): 12207–11. Bibcode:2004PNAS..10112207B. doi:10.1073/pnas.0404650101. PMC 514458. PMID 15297610.
  51. Abbott A (January 24, 2010). "Healthy prions protect nerves". Nature. doi:10.1038/news.2010.29. S2CID 84980140.
  52. Nailwal H, Chan FK (January 2019). "Necroptosis in anti-viral inflammation". Cell Death and Differentiation. 26 (1): 4–13. doi:10.1038/s41418-018-0172-x. PMC 6294789. PMID 30050058.
  53. Shorter J, Lindquist S (June 2005). "Prions as adaptive conduits of memory and inheritance". Nature Reviews. Genetics. 6 (6): 435–450. doi:10.1038/nrg1616. PMID 15931169. S2CID 5575951.
  54. Maglio LE, Perez MF, Martins VR, Brentani RR, Ramirez OA (November 2004). "Hippocampal synaptic plasticity in mice devoid of cellular prion protein". Brain Research. Molecular Brain Research. 131 (1–2): 58–64. doi:10.1016/j.molbrainres.2004.08.004. PMID 15530652.
  55. Caiati MD, Safiulina VF, Fattorini G, Sivakumaran S, Legname G, Cherubini E (February 2013). "PrPC controls via protein kinase A the direction of synaptic plasticity in the immature hippocampus". The Journal of Neuroscience. 33 (7): 2973–83. doi:10.1523/JNEUROSCI.4149-12.2013. PMC 6619229. PMID 23407955.
  56. Sudhakaran IP, Ramaswami M (May 2017). "Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains". RNA Biology. 14 (5): 568–586. doi:10.1080/15476286.2016.1244588. PMC 5449092. PMID 27726526.
  57. Zhang CC, Steele AD, Lindquist S, Lodish HF (February 2006). "Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal". Proceedings of the National Academy of Sciences of the United States of America. 103 (7): 2184–9. Bibcode:2006PNAS..103.2184Z. doi:10.1073/pnas.0510577103. PMC 1413720. PMID 16467153.
  58. Lathe R, Darlix JL (December 2017). "Prion Protein PRNP: A New Player in Innate Immunity? The Aβ Connection". Journal of Alzheimer's Disease Reports. 1 (1): 263–275. doi:10.3233/ADR-170037. PMC 6159716. PMID 30480243.
  59. Cohen FE, Pan KM, Huang Z, Baldwin M, Fletterick RJ, Prusiner SB (April 1994). "Structural clues to prion replication". Science. 264 (5158): 530–1. Bibcode:1994Sci...264..530C. doi:10.1126/science.7909169. PMID 7909169.
  60. Eigen M (December 1996). "Prionics or the kinetic basis of prion diseases". Biophysical Chemistry. 63 (1): A1-18. doi:10.1016/S0301-4622(96)02250-8. PMID 8981746.
  61. Vázquez-Fernández E, Young HS, Requena JR, Wille H (2017). "The Structure of Mammalian Prions and Their Aggregates". International Review of Cell and Molecular Biology. 329: 277–301. doi:10.1016/bs.ircmb.2016.08.013. ISBN 978-0-12-812251-8. PMID 28109330.
  62. Bolton DC, Rudelli RD, Currie JR, Bendheim PE (December 1991). "Copurification of Sp33-37 and scrapie agent from hamster brain prior to detectable histopathology and clinical disease". The Journal of General Virology. 72 (12): 2905–13. doi:10.1099/0022-1317-72-12-2905. PMID 1684986.
  63. Jendroska K, Heinzel FP, Torchia M, Stowring L, Kretzschmar HA, Kon A, et al. (September 1991). "Proteinase-resistant prion protein accumulation in Syrian hamster brain correlates with regional pathology and scrapie infectivity". Neurology. 41 (9): 1482–90. doi:10.1212/WNL.41.9.1482. PMID 1679911. S2CID 13098083.
  64. Beekes M, Baldauf E, Diringer H (August 1996). "Sequential appearance and accumulation of pathognomonic markers in the central nervous system of hamsters orally infected with scrapie". The Journal of General Virology. 77 ( Pt 8) (8): 1925–34. doi:10.1099/0022-1317-77-8-1925. PMID 8760444.
  65. Bamborough P, Wille H, Telling GC, Yehiely F, Prusiner SB, Cohen FE (1996). "Prion protein structure and scrapie replication: theoretical, spectroscopic, and genetic investigations". Cold Spring Harbor Symposia on Quantitative Biology. 61: 495–509. doi:10.1101/SQB.1996.061.01.050 (inactive November 1, 2024). PMID 9246476.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  66. ^ Masel J, Jansen VA, Nowak MA (March 1999). "Quantifying the kinetic parameters of prion replication". Biophysical Chemistry. 77 (2–3): 139–152. CiteSeerX 10.1.1.178.8812. doi:10.1016/S0301-4622(99)00016-2. PMID 10326247.
  67. Knowles TP, Waudby CA, Devlin GL, Cohen SI, Aguzzi A, Vendruscolo M, et al. (December 2009). "An analytical solution to the kinetics of breakable filament assembly". Science. 326 (5959): 1533–7. Bibcode:2009Sci...326.1533K. doi:10.1126/science.1178250. PMID 20007899. S2CID 6267152.
  68. Masel J, Jansen VA (December 2000). "Designing drugs to stop the formation of prion aggregates and other amyloids". Biophysical Chemistry. 88 (1–3): 47–59. doi:10.1016/S0301-4622(00)00197-6. PMID 11152275.
  69. ^ Deleault NR, Harris BT, Rees JR, Supattapone S (June 2007). "Formation of native prions from minimal components in vitro". Proceedings of the National Academy of Sciences of the United States of America. 104 (23): 9741–6. doi:10.1073/pnas.0702662104. PMC 1887554. PMID 17535913.
  70. Deleault NR, Walsh DJ, Piro JR, Wang F, Wang X, Ma J, et al. (July 2012). "Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions". Proceedings of the National Academy of Sciences of the United States of America. 109 (28): E1938 – E1946. doi:10.1073/pnas.1206999109. PMC 3396481. PMID 22711839.
  71. ^ "90. Prions". ICTVdB Index of Viruses. U.S. National Institutes of Health website. February 14, 2002. Archived from the original on August 27, 2009. Retrieved February 28, 2010.
  72. Babelhadj B, Di Bari MA, Pirisinu L, Chiappini B, Gaouar SB, Riccardi G, et al. (June 2018). "Prion Disease in Dromedary Camels, Algeria". Emerging Infectious Diseases. 24 (6): 1029–36. doi:10.3201/eid2406.172007. PMC 6004840. PMID 29652245.
  73. Hussein MF, Al-Mufarrej SI (2004). "Prion Diseases: A Review; II. Prion Diseases in Man and Animals" (PDF). Scientific Journal of King Faisal University (Basic and Applied Sciences). 5 (2): 139. Archived (PDF) from the original on April 21, 2016. Retrieved April 9, 2016.
  74. Mastrianni JA, Nixon R, Layzer R, Telling GC, Han D, DeArmond SJ, et al. (May 1999). "Prion protein conformation in a patient with sporadic fatal insomnia". The New England Journal of Medicine. 340 (21): 1630–8. doi:10.1056/NEJM199905273402104. PMID 10341275.
    Lay summary: "BSE proteins may cause fatal insomnia". BBC News. May 28, 1999.
  75. Nitrini R, Rosemberg S, Passos-Bueno MR, da Silva LS, Iughetti P, Papadopoulos M, et al. (August 1997). "Familial spongiform encephalopathy associated with a novel prion protein gene mutation". Annals of Neurology. 42 (2): 138–146. doi:10.1002/ana.410420203. PMID 9266722. S2CID 22600579.
  76. Robbins SL, Cotran RS, Kumar V, Collins T, eds. (1999). Robbins pathologic basis of disease. Philadelphia: Saunders. ISBN 0-7216-7335-X.
  77. Belay ED (1999). "Transmissible spongiform encephalopathies in humans". Annual Review of Microbiology. 53: 283–314. doi:10.1146/annurev.micro.53.1.283. PMID 10547693. S2CID 18648029.
  78. "Prion Diseases". US Centers for Disease Control. January 26, 2006. Archived from the original on March 4, 2010. Retrieved February 28, 2010.
  79. Imran M, Mahmood S (December 2011). "An overview of human prion diseases". Virology Journal. 8 (1): 559. doi:10.1186/1743-422X-8-559. PMC 3296552. PMID 22196171.
  80. Mastrianni JA (April 2010). "The genetics of prion diseases". Genetics in Medicine. 12 (4): 187–195. doi:10.1097/GIM.0b013e3181cd7374. PMID 20216075.
  81. Collinge J (2001). "Prion diseases of humans and animals: their causes and molecular basis" (PDF). Annual Review of Neuroscience. 24: 519–550. doi:10.1146/annurev.neuro.24.1.519. PMID 11283320. S2CID 18915904. Archived from the original (PDF) on February 25, 2019.
  82. Ironside JW (March 2006). "Variant Creutzfeldt-Jakob disease: risk of transmission by blood transfusion and blood therapies". Haemophilia. 12 (Suppl 1): 8–15, discussion 26–28. doi:10.1111/j.1365-2516.2006.01195.x. PMID 16445812.
  83. Gilch S, Winklhofer KF, Groschup MH, Nunziante M, Lucassen R, Spielhaupter C, et al. (August 2001). "Intracellular re-routing of prion protein prevents propagation of PrP(Sc) and delays onset of prion disease". The EMBO Journal. 20 (15): 3957–66. doi:10.1093/emboj/20.15.3957. PMC 149175. PMID 11483499.
  84. Agarwal A, Mukhopadhyay S (January 2022). "Prion Protein Biology Through the Lens of Liquid-Liquid Phase Separation". Journal of Molecular Biology. 434 (1): 167368. doi:10.1016/j.jmb.2021.167368. PMID 34808226.
  85. Moda F (2017). "Protein Misfolding Cyclic Amplification of Infectious Prions". Progress in Molecular Biology and Translational Science. 150: 361–374. doi:10.1016/bs.pmbts.2017.06.016. ISBN 978-0-12-811226-7. PMID 28838669.
  86. Groschup MH, Kretzschmar HA, eds. (2001). Prion Diseases Diagnosis and Pathogeneis. Archives of Virology. Vol. 16. New York: Springer. doi:10.1007/978-3-7091-6308-5. ISBN 978-3-211-83530-2.
  87. Telling GC, Scott M, Mastrianni J, Gabizon R, Torchia M, Cohen FE, et al. (October 1995). "Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein". Cell. 83 (1): 79–90. doi:10.1016/0092-8674(95)90236-8. PMID 7553876. S2CID 15235574.
  88. Johnson CJ, Pedersen JA, Chappell RJ, McKenzie D, Aiken JM (July 2007). "Oral transmissibility of prion disease is enhanced by binding to soil particles". PLOS Pathogens. 3 (7): e93. doi:10.1371/journal.ppat.0030093. PMC 1904474. PMID 17616973.
  89. Tamgüney G, Miller MW, Wolfe LL, Sirochman TM, Glidden DV, Palmer C, et al. (September 2009). "Asymptomatic deer excrete infectious prions in faeces". Nature. 461 (7263): 529–532. Bibcode:2009Natur.461..529T. doi:10.1038/nature08289. PMC 3186440. PMID 19741608.
  90. ^ Haybaeck J, Heikenwalder M, Klevenz B, Schwarz P, Margalith I, Bridel C, et al. (January 2011). "Aerosols transmit prions to immunocompetent and immunodeficient mice". PLOS Pathogens. 7 (1): e1001257. doi:10.1371/journal.ppat.1001257. PMC 3020930. PMID 21249178. (Retracted, see doi:10.1371/journal.ppat.1012396, PMID 39024193. If this is an intentional citation to a retracted paper, please replace {{retracted|...}} with {{retracted|...|intentional=yes}}.)
    Lay summary: Mackenzie D (January 13, 2011). "Prion disease can spread through air". New Scientist.
  91. Van Dorsselaer A, Carapito C, Delalande F, Schaeffer-Reiss C, Thierse D, Diemer H, et al. (March 2011). "Detection of prion protein in urine-derived injectable fertility products by a targeted proteomic approach". PLOS ONE. 6 (3): e17815. Bibcode:2011PLoSO...617815V. doi:10.1371/journal.pone.0017815. PMC 3063168. PMID 21448279.
  92. Kim YC, Jeong BH (November 2021). "The First Meta-Analysis of the M129V Single-Nucleotide Polymorphism (SNP) of the Prion Protein Gene (PRNP) with Sporadic Creutzfeldt-Jakob Disease". Cells. 10 (11). doi:10.3390/cells10113132. PMC 8618741. PMID 34831353.
  93. Beecher C (June 1, 2015). "Surprising' Discovery Made About Chronic Wasting Disease". Food Safety News. Archived from the original on April 28, 2016. Retrieved April 8, 2016.
  94. Pritzkow S, Morales R, Moda F, Khan U, Telling GC, Hoover E, et al. (May 2015). "Grass plants bind, retain, uptake, and transport infectious prions". Cell Reports. 11 (8): 1168–75. doi:10.1016/j.celrep.2015.04.036. PMC 4449294. PMID 25981035.
  95. Qin K, O'Donnell M, Zhao RY (August 2006). "Doppel: more rival than double to prion". Neuroscience. 141 (1): 1–8. doi:10.1016/j.neuroscience.2006.04.057. PMID 16781817. S2CID 28822120.
  96. Race RE, Raymond GJ (February 2004). "Inactivation of transmissible spongiform encephalopathy (prion) agents by environ LpH". Journal of Virology. 78 (4): 2164–5. doi:10.1128/JVI.78.4.2164-2165.2004. PMC 369477. PMID 14747583.
  97. Sutton JM, Dickinson J, Walker JT, Raven ND (September 2006). "Methods to minimize the risks of Creutzfeldt-Jakob disease transmission by surgical procedures: where to set the standard?". Clinical Infectious Diseases. 43 (6): 757–764. doi:10.1086/507030. PMID 16912952.
  98. Collins SJ, Lawson VA, Masters CL (January 2004). "Transmissible spongiform encephalopathies". Lancet. 363 (9402): 51–61. doi:10.1016/S0140-6736(03)15171-9. PMID 14723996. S2CID 23212525.
  99. Brown P, Rau EH, Johnson BK, Bacote AE, Gibbs CJ, Gajdusek DC (March 2000). "New studies on the heat resistance of hamster-adapted scrapie agent: threshold survival after ashing at 600 degrees C suggests an inorganic template of replication". Proceedings of the National Academy of Sciences of the United States of America. 97 (7): 3418–21. Bibcode:2000PNAS...97.3418B. doi:10.1073/pnas.050566797. PMC 16254. PMID 10716712.
  100. "Ozone Sterilization". UK Health Protection Agency. April 14, 2005. Archived from the original on February 10, 2007. Retrieved February 28, 2010.
  101. Botsios S, Tittman S, Manuelidis L (2015). "Rapid chemical decontamination of infectious CJD and scrapie particles parallels treatments known to disrupt microbes and biofilms". Virulence. 6 (8): 787–801. doi:10.1080/21505594.2015.1098804. PMC 4826107. PMID 26556670.
  102. Koga Y, Tanaka S, Sakudo A, Tobiume M, Aranishi M, Hirata A, et al. (March 2014). "Proteolysis of abnormal prion protein with a thermostable protease from Thermococcus kodakarensis KOD1". Applied Microbiology and Biotechnology. 98 (5): 2113–20. doi:10.1007/s00253-013-5091-7. PMID 23880875. S2CID 2677641.
  103. Eraña H, Pérez-Castro MÁ, García-Martínez S, Charco JM, López-Moreno R, Díaz-Dominguez CM, et al. (2020). "A Novel, Reliable and Highly Versatile Method to Evaluate Different Prion Decontamination Procedures". Frontiers in Bioengineering and Biotechnology. 8: 589182. doi:10.3389/fbioe.2020.589182. PMC 7658626. PMID 33195153.
  104. Weissmann C, Enari M, Klöhn PC, Rossi D, Flechsig E (December 2002). "Transmission of prions". Proceedings of the National Academy of Sciences of the United States of America. 99 (s 4): 16378–83. Bibcode:2002PNAS...9916378W. doi:10.1073/pnas.172403799. PMC 139897. PMID 12181490.
  105. Zabel M, Ortega A (September 2017). "The Ecology of Prions". Microbiology and Molecular Biology Reviews. 81 (3). doi:10.1128/MMBR.00001-17. PMC 5584314. PMID 28566466.
  106. Kuznetsova A, Cullingham C, McKenzie D, Aiken JM (November 2018). "Soil humic acids degrade CWD prions and reduce infectivity". PLOS Pathogens. 14 (11): e1007414. doi:10.1371/journal.ppat.1007414. PMC 6264147. PMID 30496301.
  107. Yuan Q, Eckland T, Telling G, Bartz J, Bartelt-Hunt S (February 2015). "Mitigation of prion infectivity and conversion capacity by a simulated natural process--repeated cycles of drying and wetting". PLOS Pathogens. 11 (2): e1004638. doi:10.1371/journal.ppat.1004638. PMC 4335458. PMID 25665187.
  108. ^ López-Pérez Ó, Badiola JJ, Bolea R, Ferrer I, Llorens F, Martín-Burriel I (August 27, 2020). "An Update on Autophagy in Prion Diseases". Frontiers in Bioengineering and Biotechnology. 8: 975. doi:10.3389/fbioe.2020.00975. PMC 7481332. PMID 32984276.
  109. Langeveld JP, Wang JJ, Van de Wiel DF, Shih GC, Garssen GJ, Bossers A, et al. (December 2003). "Enzymatic degradation of prion protein in brain stem from infected cattle and sheep". The Journal of Infectious Diseases. 188 (11): 1782–9. doi:10.1086/379664. PMID 14639552.
  110. Okoroma EA, Purchase D, Garelick H, Morris R, Neale MH, Windl O, et al. (July 16, 2013). "Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions". PLOS ONE. 8 (7): e68099. Bibcode:2013PLoSO...868099O. doi:10.1371/journal.pone.0068099. PMC 3712960. PMID 23874511.
  111. Hui Z, Doi H, Kanouchi H, Matsuura Y, Mohri S, Nonomura Y, et al. (August 2004). "Alkaline serine protease produced by Streptomyces sp. degrades PrP(Sc)". Biochemical and Biophysical Research Communications. 321 (1): 45–50. doi:10.1016/j.bbrc.2004.06.100. PMID 15358213.
  112. Snajder M, Vilfan T, Cernilec M, Rupreht R, Popović M, Juntes P, et al. (2012). "Enzymatic degradation of PrPSc by a protease secreted from Aeropyrum pernix K1". PLOS ONE. 7 (6): e39548. Bibcode:2012PLoSO...739548S. doi:10.1371/journal.pone.0039548. PMC 3386259. PMID 22761822.
  113. Mitsuiki S, Hui Z, Matsumoto D, Sakai M, Moriyama Y, Furukawa K, et al. (May 2006). "Degradation of PrP(Sc) by keratinolytic protease from Nocardiopsis sp. TOA-1". Bioscience, Biotechnology, and Biochemistry. 70 (5): 1246–8. doi:10.1271/bbb.70.1246. PMID 16717429.
  114. Hsu RL, Lee KT, Wang JH, Lee LY, Chen RP (January 2009). "Amyloid-degrading ability of nattokinase from Bacillus subtilis natto". Journal of Agricultural and Food Chemistry. 57 (2): 503–8. Bibcode:2009JAFC...57..503H. doi:10.1021/jf803072r. PMID 19117402.
  115. Booth CJ, Johnson CJ, Pedersen JA (April 2013). "Microbial and enzymatic inactivation of prions in soil environments". Soil Biology and Biochemistry. 59: 1–15. Bibcode:2013SBiBi..59....1B. doi:10.1016/j.soilbio.2012.12.016. ISSN 0038-0717.
  116. Dickinson J, Murdoch H, Dennis MJ, Hall GA, Bott R, Crabb WD, et al. (May 2009). "Decontamination of prion protein (BSE301V) using a genetically engineered protease". The Journal of Hospital Infection. 72 (1): 65–70. doi:10.1016/j.jhin.2008.12.007. PMID 19201054.
  117. Johnson CJ, Bennett JP, Biro SM, Duque-Velasquez JC, Rodriguez CM, Bessen RA, et al. (May 2011). "Degradation of the disease-associated prion protein by a serine protease from lichens". PLOS ONE. 6 (5): e19836. Bibcode:2011PLoSO...619836J. doi:10.1371/journal.pone.0019836. PMC 3092769. PMID 21589935.
  118. Lindquist S, Krobitsch S, Li L, Sondheimer N (February 2001). "Investigating protein conformation-based inheritance and disease in yeast". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 356 (1406): 169–176. doi:10.1098/rstb.2000.0762. PMC 1088422. PMID 11260797.
  119. Aguzzi A (January 2008). "Unraveling prion strains with cell biology and organic chemistry". Proceedings of the National Academy of Sciences of the United States of America. 105 (1): 11–12. Bibcode:2008PNAS..105...11A. doi:10.1073/pnas.0710824105. PMC 2224168. PMID 18172195.
  120. Dong J, Bloom JD, Goncharov V, Chattopadhyay M, Millhauser GL, Lynn DG, et al. (November 2007). "Probing the role of PrP repeats in conformational conversion and amyloid assembly of chimeric yeast prions". The Journal of Biological Chemistry. 282 (47): 34204–12. doi:10.1074/jbc.M704952200. PMC 2262835. PMID 17893150.
  121. Newby GA, Lindquist S (June 2013). "Blessings in disguise: biological benefits of prion-like mechanisms". Trends in Cell Biology. 23 (6): 251–9. doi:10.1016/j.tcb.2013.01.007. hdl:1721.1/103966. PMID 23485338.
  122. Halfmann R, Lindquist S (October 2010). "Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits". Science. 330 (6004): 629–632. Bibcode:2010Sci...330..629H. doi:10.1126/science.1191081. PMID 21030648. S2CID 206527151.
  123. Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S (February 2012). "Prions are a common mechanism for phenotypic inheritance in wild yeasts". Nature. 482 (7385): 363–8. Bibcode:2012Natur.482..363H. doi:10.1038/nature10875. PMC 3319070. PMID 22337056.
  124. Rogoza T, Goginashvili A, Rodionova S, Ivanov M, Viktorovskaya O, Rubel A, et al. (June 2010). "Non-Mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1". Proceedings of the National Academy of Sciences of the United States of America. 107 (23): 10573–7. Bibcode:2010PNAS..10710573R. doi:10.1073/pnas.1005949107. PMC 2890785. PMID 20498075.
  125. ^ Aguzzi A, Lakkaraju AK, Frontzek K (January 2018). "Toward Therapy of Human Prion Diseases" (PDF). Annual Review of Pharmacology and Toxicology. 58 (1): 331–351. doi:10.1146/annurev-pharmtox-010617-052745. PMID 28961066. Archived (PDF) from the original on March 12, 2020. Retrieved March 5, 2020.
  126. "Prion Clinic – Drug treatments". September 13, 2017. Archived from the original on January 29, 2020. Retrieved January 29, 2020.
  127. ^ King OD, Gitler AD, Shorter J (June 2012). "The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease". Brain Research. 1462: 61–80. doi:10.1016/j.brainres.2012.01.016. PMC 3372647. PMID 22445064.
  128. Goedert M (August 2015). "NEURODEGENERATION. Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein". Science. 349 (6248): 1255555. doi:10.1126/science.1255555. PMID 26250687. S2CID 206558562.
  129. Murakami T, Ishiguro N, Higuchi K (March 2014). "Transmission of systemic AA amyloidosis in animals". Veterinary Pathology. 51 (2): 363–371. doi:10.1177/0300985813511128. PMID 24280941.
  130. Jucker M, Walker LC (September 2013). "Self-propagation of pathogenic protein aggregates in neurodegenerative diseases". Nature. 501 (7465): 45–51. Bibcode:2013Natur.501...45J. doi:10.1038/nature12481. PMC 3963807. PMID 24005412.
  131. Alberti S, Halfmann R, King O, Kapila A, Lindquist S (April 2009). "A systematic survey identifies prions and illuminates sequence features of prionogenic proteins". Cell. 137 (1): 146–158. doi:10.1016/j.cell.2009.02.044. PMC 2683788. PMID 19345193.
  132. ^ Eisenberg D, Jucker M (March 2012). "The amyloid state of proteins in human diseases". Cell. 148 (6): 1188–1203. doi:10.1016/j.cell.2012.02.022. PMC 3353745. PMID 22424229.
  133. Ayers JI, Prusiner SB (April 2020). "Prion protein - mediator of toxicity in multiple proteinopathies". Nature Reviews. Neurology. 16 (4): 187–8. doi:10.1038/s41582-020-0332-8. PMID 32123368. S2CID 211728879.
  134. Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, et al. (March 2013). "Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS". Nature. 495 (7442): 467–473. Bibcode:2013Natur.495..467K. doi:10.1038/nature11922. PMC 3756911. PMID 23455423.
  135. "What are Biological Weapons?". United Nations, Office for Disarmament Affairs. Archived from the original on May 21, 2021. Retrieved May 21, 2021.
  136. "Prions: the danger of biochemical weapons" (PDF). Archived (PDF) from the original on December 9, 2020. Retrieved May 21, 2021.
  137. "The Next Plague: Prions are Tiny, Mysterious and Frightening". American Council on Science and Health. March 20, 2017. Archived from the original on May 21, 2021. Retrieved May 21, 2021.
  138. "Prions as Bioweapons? - Much Ado About Nothing; or Apt Concerns Over Tiny Proteins used in Biowarfare". Defence iQ. September 13, 2019. Archived from the original on May 21, 2021. Retrieved May 21, 2021.
  139. "How Prions Came to Be: A Brief History – Infectious Disease: Superbugs, Science, & Society". Archived from the original on September 17, 2021. Retrieved September 17, 2021.
  140. Ness A, Aiken J, McKenzie D (December 2023). "Sheep scrapie and deer rabies in England prior to 1800". Prion. 17 (1): 7–15. doi:10.1080/19336896.2023.2166749. PMC 9858414. PMID 36654484.
  141. Alper T, Cramp WA, Haig DA, Clarke MC (May 1967). "Does the agent of scrapie replicate without nucleic acid?". Nature. 214 (5090): 764–6. Bibcode:1967Natur.214..764A. doi:10.1038/214764a0. PMID 4963878. S2CID 4195902.
  142. ^ Griffith JS (September 1967). "Self-replication and scrapie". Nature. 215 (5105): 1043–4. Bibcode:1967Natur.215.1043G. doi:10.1038/2151043a0. PMID 4964084. S2CID 4171947.
  143. Field EJ (September 1966). "Transmission experiments with multiple sclerosis: an interim report". British Medical Journal. 2 (5513): 564–5. doi:10.1136/bmj.2.5513.564. PMC 1943767. PMID 5950508.
  144. Adams DH, Field EJ (September 1968). "The infective process in scrapie". Lancet. 2 (7570): 714–6. doi:10.1016/s0140-6736(68)90754-x. PMID 4175093.
  145. Field EJ, Farmer F, Caspary EA, Joyce G (April 1969). "Susceptibility of scrapie agent to ionizing radiation". Nature. 5188. 222 (5188): 90–91. Bibcode:1969Natur.222...90F. doi:10.1038/222090a0. PMID 4975649. S2CID 4195610.
  146. ^ Bolton D (January 1, 2004). "Prions, the Protein Hypothesis, and Scientific Revolutions". In Nunnally BK, Krull IS (eds.). Prions and Mad Cow Disease. Marcel Dekker. pp. 21–60. ISBN 978-0-203-91297-3. Archived from the original on March 22, 2022. Retrieved July 27, 2018 – via ResearchGate.
  147. Crick F (August 1970). "Central dogma of molecular biology". Nature. 227 (5258): 561–3. Bibcode:1970Natur.227..561C. doi:10.1038/227561a0. PMID 4913914. S2CID 4164029.
  148. Coffin JM, Fan H (September 2016). "The Discovery of Reverse Transcriptase". Annual Review of Virology. 3 (1): 29–51. doi:10.1146/annurev-virology-110615-035556. PMID 27482900.
  149. Taubes G (December 1986). "The game of name is fame. But is it science?". Discover. 7 (12): 28–41.
  150. Atkinson CJ, Zhang K, Munn AL, Wiegmans A, Wei MQ (2016). "Prion protein scrapie and the normal cellular prion protein". Prion. 10 (1): 63–82. doi:10.1080/19336896.2015.1110293. PMC 4981215. PMID 26645475.
  151. "The Nobel Prize in Physiology or Medicine, 1997". NobelPrize.org. Archived from the original on August 9, 2018. Retrieved February 28, 2010. The Nobel Prize in Physiology or Medicine 1997 was awarded to Stanley B. Prusiner 'for his discovery of Prions - a new biological principle of infection.'
  152. Frazer J. "Prions Are Forever". Scientific American Blog Network. Archived from the original on January 4, 2022. Retrieved December 28, 2021.

External links

ClassificationD
Prion diseases and transmissible spongiform encephalopathy
Prion diseases
in humans
inherited/PRNP:
sporadic:
acquired/
transmissible:
Prion diseases
in other animals
Self-replicating organic structures
Cellular life
Virus
Subviral
agents
Viroid
Helper-virus
dependent
Satellite
  • ssRNA satellite virus
  • dsDNA satellite virus (Virophage)
  • ssDNA satellite virus
  • ssDNA satellite
  • dsRNA satellite
  • ssRNA satellite (Virusoid)
  • Satellite-like nucleic acids
    • RNA
    • DNA
Other
Prion
Nucleic acid
self-replication
Mobile genetic
elements
Other aspects
Endosymbiosis
Abiogenesis
See also
Life, non-cellular life, and comparable structures
Cellular life
"Prokaryota"
Eukaryota
Incertae sedis
Non-cellular life
Virus
Viroid
Satellite
Realms
Unassigned
ClassesNaldaviricetes
Families
Genera
Other
Comparable
structures
Gene expression
Introduction
to genetics
Transcription
Types
Key elements
Post-transcription
Translation
Types
Key elements
Regulation
Influential people
Categories:
Prion Add topic